• Title/Summary/Keyword: Surface Intensity

Search Result 2,266, Processing Time 0.03 seconds

Characteristics of the Maximum Glow Intensity According to the Thermoluminescent Phosphors used in the Absorbed Dose Measurement of the Radiation Therapy (방사선치료 선량 측정에 사용되는 열형광체에 따른 최대 형광 강도 특성)

  • Kang, Suman;Im, Inchul;Park, Cheolwoo;Lee, Mihyeon;Lee, Jaeseung
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.181-187
    • /
    • 2014
  • The purpose of this study were to analyze the characteristic of the glow curves in order to the glow temperature of the thermoluminescent dosimeters (TLDs) for the absorbed dose measurement of the radiation therapy. In this study, we was used the TLDs of the LiF:Mg${\cdot}$Ti, LiF:Mg${\cdot}$Cu${\cdot}$P, $CaF_2$:Dy, $CaF_2$:Mn (Thermo Fisher Scientific Inc., USA). The source-to-solid dry phantom (RW3 slab, IBA Dosmetry, Germany) surface distance was set at 100 cm, and the exposure dose of 100 MU (monitor unit) was used 6- and 15-MV X-rays, and 6- and 12-MeV electron beams in the reference depth, respectively. After the radiations exposure, we were to analyze the glow curves by using the TL reader (Hashaw 3500, Thermo Fisher Scientific Inc., USA) at the fixed heating rate of $15^{\circ}C/sec$ from $50^{\circ}C$ to $260^{\circ}C$. The glow peaks, the trapping level in the captured electrons and holes combined with the emitted light, were discovered the two or three peak. When the definite increasing the temperature of the TLDs, the maximum glow peak representing the glow temperature was follow as; $LiF:Mg{\cdot}Ti$: $185.5{\pm}1.3^{\circ}C$, $LiF:Mg{\cdot}Ti$: $135.0{\pm}5.1^{\circ}C$, $CaF_2$:Dy: $144.0{\pm}1.6^{\circ}C$, $CaF_2$:Mn: $294.3{\pm}3.8^{\circ}C$, respectively. Because the glow emission probability of the captured electrons depend on the heating temperature after the exposure radiation, TLDs by applying the fixed heating rate, the accuracy of measurement will be able to improve within the absorbed dose measurement of the radiation therapy.

The Effect of Photomodulation in Human Dermal Fibroblasts (피부 섬유아세포에서 광자극의 효과)

  • Kim, Mi Na;Kwak, Taek Jong;Kang, Nae Gyu;Lee, Sang Hwa;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.325-331
    • /
    • 2015
  • Skin is exposed to sunlight or artificial indoor light on a daily. The reached solar light on the earth surface consist of 50% visible light and 45% infrared (IR) except for ultra violet (UV). The negative effects of UV including UVB and UVA have been steadily investigated within the last decades. However, little is known about the effects of visible or IR light. In this study, we irradiated human dermal fibroblasts using light emitting diode (LED) to investigate the optimal parameter for enhancing cell growth and collagen synthesis. We found that red of 630 nm and green of 520 nm enhance the cell proliferation, but irradiation with purple and blue light exerts toxic effects. To examine the response of irradiation time and light intensity on the fibroblasts, cells were exposed to red or green light with intensities from 0.05 to $0.75mW/cm^2$. Procollagen secretion was increased of 1.4 fold by 10 min irradiation, while 30 min treatment decreased the collagen synthesis of dermal fibroblasts. Treatment with red of $0.3mW/cm^2$ and green of 0.15 and $0.3mW/cm^2$ resulted in enhancement of collagen mRNA. Lastly, we investigated the combinatorial effect of red and green light on dermal fibroblasts. The sequential irradiation of red and green light is an efficient way for the purpose of the increase in the number of fibroblasts than single light treatment. On the other hand, the exposure of red light alone was more effective method for enhancing of collagen secretion. Our study showed that specific light parameters accelerated cell proliferation, gene expression and collagen secretion on human dermal fibroblasts. In conclusion, we demonstrate that light exposure with specific parameter has beneficial effects on the function of dermal fibroblasts, and suggests the possibility of its cosmetically and clinical application.

Detection of Forest Fire Damage from Sentinel-1 SAR Data through the Synergistic Use of Principal Component Analysis and K-means Clustering (Sentinel-1 SAR 영상을 이용한 주성분분석 및 K-means Clustering 기반 산불 탐지)

  • Lee, Jaese;Kim, Woohyeok;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1373-1387
    • /
    • 2021
  • Forest fire poses a significant threat to the environment and society, affecting carbon cycle and surface energy balance, and resulting in socioeconomic losses. Widely used multi-spectral satellite image-based approaches for burned area detection have a problem in that they do not work under cloudy conditions. Therefore, in this study, Sentinel-1 Synthetic Aperture Radar (SAR) data from Europe Space Agency, which can be collected in all weather conditions, were used to identify forest fire damaged area based on a series of processes including Principal Component Analysis (PCA) and K-means clustering. Four forest fire cases, which occurred in Gangneung·Donghae and Goseong·Sokcho in Gangwon-do of South Korea and two areas in North Korea on April 4, 2019, were examined. The estimated burned areas were evaluated using fire reference data provided by the National Institute of Forest Science (NIFOS) for two forest fire cases in South Korea, and differenced normalized burn ratio (dNBR) for all four cases. The average accuracy using the NIFOS reference data was 86% for the Gangneung·Donghae and Goseong·Sokcho fires. Evaluation using dNBR showed an average accuracy of 84% for all four forest fire cases. It was also confirmed that the stronger the burned intensity, the higher detection the accuracy, and vice versa. Given the advantage of SAR remote sensing, the proposed statistical processing and K-means clustering-based approach can be used to quickly identify forest fire damaged area across the Korean Peninsula, where a cloud cover rate is high and small-scale forest fires frequently occur.

Truncation Artifact Reduction Using Weighted Normalization Method in Prototype R/F Chest Digital Tomosynthesis (CDT) System (프로토타입 R/F 흉부 디지털 단층영상합성장치 시스템에서 잘림 아티팩트 감소를 위한 가중 정규화 접근법에 대한 연구)

  • Son, Junyoung;Choi, Sunghoon;Lee, Donghoon;Kim, Hee-Joung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • Chest digital tomosynthesis has become a practical imaging modality because it can solve the problem of anatomy overlapping in conventional chest radiography. However, because of both limited scan angle and finite-size detector, a portion of chest cannot be represented in some or all of the projection. These bring a discontinuity in intensity across the field of view boundaries in the reconstructed slices, which we refer to as the truncation artifacts. The purpose of this study was to reduce truncation artifacts using a weighted normalization approach and to investigate the performance of this approach for our prototype chest digital tomosynthesis system. The system source-to-image distance was 1100 mm, and the center of rotation of X-ray source was located on 100 mm above the detector surface. After obtaining 41 projection views with ${\pm}20^{\circ}$ degrees, tomosynthesis slices were reconstructed with the filtered back projection algorithm. For quantitative evaluation, peak signal to noise ratio and structure similarity index values were evaluated after reconstructing reference image using simulation, and mean value of specific direction values was evaluated using real data. Simulation results showed that the peak signal to noise ratio and structure similarity index was improved respectively. In the case of the experimental results showed that the effect of artifact in the mean value of specific direction of the reconstructed image was reduced. In conclusion, the weighted normalization method improves the quality of image by reducing truncation artifacts. These results suggested that weighted normalization method could improve the image quality of chest digital tomosynthesis.

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

Changes in Meteorological Variables by SO2 Emissions over East Asia using a Linux-based U.K. Earth System Model (리눅스 기반 U.K. 지구시스템모형을 이용한 동아시아 SO2 배출에 따른 기상장 변화)

  • Youn, Daeok;Song, Hyunggyu;Lee, Johan
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.60-76
    • /
    • 2022
  • This study presents a software full setup and the following test execution times in a Linux cluster for the United Kingdom Earth System Model (UKESM) and then compares the model results from control and experimental simulations of the UKESM relative to various observations. Despite its low resolution, the latest version of the UKESM can simulate tropospheric chemistry-aerosol processes and the stratospheric ozone chemistry using the United Kingdom Chemistry and Aerosol (UKCA) module. The UKESM with UKCA (UKESM-UKCA) can treat atmospheric chemistryaerosol-cloud-radiation interactions throughout the whole atmosphere. In addition to the control UKESM run with the default CMIP5 SO2 emission dataset, an experimental run was conducted to evaluate the aerosol effects on meteorology by changing atmospheric SO2 loading with the newest REAS data over East Asia. The simulation period of the two model runs was 28 years, from January 1, 1982 to December 31, 2009. Spatial distributions of monthly mean aerosol optical depth, 2-m temperature, and precipitation intensity from model simulations and observations over East Asia were compared. The spatial patterns of surface temperature and precipitation from the two model simulations were generally in reasonable agreement with the observations. The simulated ozone concentration and total column ozone also agreed reasonably with the ERA5 reanalyzed one. Comparisons of spatial patterns and linear trends led to the conclusion that the model simulation with the newest SO2 emission dataset over East Asia showed better temporal changes in temperature and precipitation over the western Pacific and inland China. Our results are in line with previous finding that SO2 emissions over East Asia are an important factor for the atmospheric environment and climate change. This study confirms that the UKESM can be installed and operated in a Linux cluster-computing environment. Thus, researchers in various fields would have better access to the UKESM, which can handle the carbon cycle and atmospheric environment on Earth with interactions between the atmosphere, ocean, sea ice, and land.

Effect for Wellness of Blood Flow Restriction Aerobic Exercise Program - Focusing on Mscle Ativity and Mtor Nurons - (혈류제한 유산소운동 프로그램의 웰니스를 위한 효과검정 - 근활성도와 운동신경원을 중심으로 -)

  • Jeong, Dae-Keun;Kang, Jeong-Il;Jang, Jun-Min
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.7
    • /
    • pp.225-233
    • /
    • 2021
  • This study quantitatively compares and analyzes lower extremity muscle activity and motor neurons by performing blood flow-restricting aerobic training in the lower extremities, which is closely related to aerobic capacity for health, in normal people, and provides basic data to suggest the effectiveness of an effective blood-restricting exercise program. would like to provide A group of 10 people who applied aerobic exercise on a treadmill by restricting blood flow to 140 mmHg of pressure was set as Experimental Group I. And 11 people who applied only aerobic exercise on a treadmill were randomly assigned as a control group. The intervention program was implemented on a treadmill for 4 weeks, 3 times a week, once a day, for 30 minutes once. In addition, muscle activity and motor neurons were measured and analyzed using surface electromyography before intervention. As a result of the study, the muscle activity of the rectus femoris, biceps femoris, tibialis anterior and gastrocnemius was significantly increased (p<.001) in the pre-and-poster comparison within the group of experimental group I (p<.001). In the pre-and-poster comparison of the control group, the muscle activity of the rectus femoris, biceps femoris, tibialis anterior and gastrocnemius was significantly increased (p<.001). In comparison of changes between groups, there was a significant difference in the activity of the rectus femoris muscle (p<.05). Combining aerobic exercise in parallel with lower extremity blood flow restriction can be developed into an injury prevention exercise program that can restore functional activity in rehabilitation training for elite athletes and elderly people with weak joints. In addition, based on these results in future research, it is considered that it is necessary to expand the scope of non-normal subjects and conduct various studies according to the pressure intensity.

An Installation and Model Assessment of the UM, U.K. Earth System Model, in a Linux Cluster (U.K. 지구시스템모델 UM의 리눅스 클러스터 설치와 성능 평가)

  • Daeok Youn;Hyunggyu Song;Sungsu Park
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.691-711
    • /
    • 2022
  • The state-of-the-art Earth system model as a virtual Earth is required for studies of current and future climate change or climate crises. This complex numerical model can account for almost all human activities and natural phenomena affecting the atmosphere of Earth. The Unified Model (UM) from the United Kingdom Meteorological Office (UK Met Office) is among the best Earth system models as a scientific tool for studying the atmosphere. However, owing to the expansive numerical integration cost and substantial output size required to maintain the UM, individual research groups have had to rely only on supercomputers. The limitations of computer resources, especially the computer environment being blocked from outside network connections, reduce the efficiency and effectiveness of conducting research using the model, as well as improving the component codes. Therefore, this study has presented detailed guidance for installing a new version of the UM on high-performance parallel computers (Linux clusters) owned by individual researchers, which would help researchers to easily work with the UM. The numerical integration performance of the UM on Linux clusters was also evaluated for two different model resolutions, namely N96L85 (1.875° ×1.25° with 85 vertical levels up to 85 km) and N48L70 (3.75° ×2.5° with 70 vertical levels up to 80 km). The one-month integration times using 256 cores for the AMIP and CMIP simulations of N96L85 resolution were 169 and 205 min, respectively. The one-month integration time for an N48L70 AMIP run using 252 cores was 33 min. Simulated results on 2-m surface temperature and precipitation intensity were compared with ERA5 re-analysis data. The spatial distributions of the simulated results were qualitatively compared to those of ERA5 in terms of spatial distribution, despite the quantitative differences caused by different resolutions and atmosphere-ocean coupling. In conclusion, this study has confirmed that UM can be successfully installed and used in high-performance Linux clusters.

Physiological, Biochemical, and Adsorption Characteristics of Abies holophylla, Acer buergerianum, Pinus densiflora, and Quercus variabilis under Elevated Particulate Matter (미세먼지 처리에 따른 전나무, 중국단풍, 소나무, 굴참나무의 생리⋅생화학적 반응 및 흡착 특성)

  • Sang-heon Woo;Koeun Lee;Jongkyu Lee;Myeong Ja Kwak;Yea Ji Lim;Su Gyeong Jeong;Sun Mi Je;Hanna Chang;Jounga Son;Chang-Young Oh;Kyongha Kim;Su Young Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.57-70
    • /
    • 2023
  • In recent years, the frequency of warnings about particulate matter (PM) has gradually increased in Korea, along with an increase in its intensity. Because of their vast surface area, reactivity to external particles, and characteristics of their leaves, urban trees can act as biofilters, reducing PM pollution. However, the air pollutant PM can cause various types of damage not only to human health but also to vegetation. Studies performed to date on the responses of trees to PM are still insufficient. Here, we analyzed the correlation between PM adsorption and physiological and biochemical responses of four major street tree species, namely, Abies holophylla, Acer buergerianum, Pinus densiflora, and Quercus variabilis, under conditions of approximately 300 ㎍ m-3 of fly ash emissions using a phytotron. The results showed that the physiological and biochemical responses and PM adsorption differed depending on the tree species. In correlation analysis, it was confirmed that there were positive correlations between physiological factors, and PM adsorption on adaxial leaf surfaces negatively impacted the physiological characteristics. This study provides fundamental information for selecting tree species to reduce PM pollution and develop sustainable urban forests.

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.