• Title/Summary/Keyword: Surface Heat Treatment

Search Result 1,656, Processing Time 0.024 seconds

Cyclic Crack Healing Effect of Al2O3 Ceramics (알루미나 세라믹스의 반복적 균열치유 특성)

  • Moon, Chang-Kwon;Kim, Bu-Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.69-74
    • /
    • 2013
  • In this study, the crack healing effects of $Al_2O_3$ ceramics based on the heat treatment conditions were investigated. The influence of the additive amounts of SiC nanoparticles and the cycling process of indentation-heat treatment on the crack healing effect of $Al_2O_3$ ceramics were also examined. Three-point bending tests were carried out and the morphological changes in the fracture surface were observed by using FE-SEM. As a result, heat-treated samples in a vacuum or air atmosphere showed improved bending strengths compared to un-heat treated samples. This means that cracked specimens can be healed by heat treatment in a vacuum or air atmosphere. The crack healing effect of $Al_2O_3$ ceramics that were heat treated in an air atmosphere was much higher than that of those heat treated in a vacuum. After heat treatment, the $Al_2O_3$ ceramics with 30 wt% SiC nanoparticles showed a higher bending strength than those with 15 wt% SiC. The cyclic indentation and heat treatment did not remarkably affect the crack healing effect. The SEM images showed that the median crack, indenter mark on the surface, and pores in the fracture surface of a specimen almost disappeared after being heat treated in an air atmosphere.

Control of Nano-Scaled Surface Microstructure of Al Sample for Improving Heat Release Ability (Al 소재의 방열특성 향상을 위한 미세조직 제어 연구)

  • Yeo, In-Chul;Kang, In-Cheol
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • In this study, the control of microstructure for increasing surface roughness of Al with an electro-chemical reaction and a post treatment is systematically investigated. The Al specimen is electro-chemically treated in an electrolyte. In condition of the post treatment at $100^{\circ}C$ for 10 min, a change of the surface microstructure occur at 50V (5 min), and a oxidized layer is at 400V, to which lead a decreasing surface roughness. The minimum temperature of the post treatment for a change of microstructure is $80^{\circ}C$. Moreover, in the condition of 300V (5 min), the electro-chemical reaction is followed by the post treatment at $100^{\circ}C$, the critical enduring time for the change of microstructure is 3 min. The longer post treatment time leads to the rougher surface. The treated Al specimen demonstrate better heat release ability owing to the higher surface roughness than the non-treated Al.

Effect of Heat Treatment on Corrosion Resistance of Zn-Mg-Al Alloy Coated Steel

  • Il Ryoung Sohn;Tae Chul Kim;Sung Ju Kim;Myung Soo Kim;Jong Sang Kim;Woo Jin Lim;Seong Mo Bae;Su Hee Shin;Doo Jin Paik
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.283-288
    • /
    • 2024
  • Hot-dip Zn-Mg-Al coatings have a complex microstructure consisting of Zn, Al, and MgZn2 phases. Its crystal structure depends on alloy content and cooling rates. Microstructure and corrosion resistance of these coatings might be affected by heat treatment. To investigate effect of heat treatment on microstructure and corrosion resistance of Zn-Mg-Al coatings, Zn-1.5%Mg-1.5%Al coated steel was heated up to 550 ℃ at a heating rate of 80 ℃/s and cooled down to room temperature. At above 500 ℃, the ternary phase of Zn-MgZn2-Al was melted down. Only Zn and MgZn2 phases remained in the coating. Heat- and non-heat-treated specimens showed similar corrosion resistance in Salt Spray Test (SST). When a Zn-3.0%Mg-2.5%Al coated steel was subjected to heat treatment at 100 ℃ or 300 ℃ for 200 h and compared with GA and GI coated steels, the microstructure of coatings was not significantly changed at 100 ℃. However, at 300 ℃, most Al in the coating reacted with Fe in the substrate, forming a Fe-Al compound layer in the lower part of the coating. MgZn2 was preferentially formed in the upper part of the coating. As a result of SST, Zn-Mg-Al coated steels showed excellent corrosion resistance, better than GA and GI.

Characteristics of Heat Treatment on Different Materials during Laser Surface Hardening of Cast Iron for Die (금형재료용 주철의 레이저 표면경화처리시 재료에 따른 열처리 특성)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1663-1668
    • /
    • 2011
  • Surface hardening treatment is required to improve the wear-resistance of press die because severe abrasion of die occurs during the drawing process in which the forming of the automotive body is completed and during the trimming process in which the unnecessary parts are cut. In this study, experiments on the laser surface treatment of press die are performed. Specimens are heat-treated separately at certain plate and edge position by using a diode laser to carry out suitable surface hardening treatment to reduce the wear during the drawing and the trimming processes, and the proper conditions for heat treatment are found. Spheroidal and flake graphite cast iron specimens are used, and the heat treatment characteristics of the two materials are compared. From the results of the study, it is confirmed that the heat treatment characteristics differed depending on the materials.

Thermal Stability of Silicon-containing Diamond-like Carbon Film (실리콘 함유 DLC 박막의 내열특성)

  • Kim, Sang-Gweon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • Diamond-like carbon (DLC) coating was studied to be a good tribological problem-solver due to its low friction characteristics and high hardness. However, generally hydrogenated DLC film has shown a weak thermal stability above $300^{\circ}C$. However, the silicon doping DLC process by DC pulse plasma enhanced chemical vapor deposition (PECVD) for the new DLC coating which has a good characterization with thermal stability at high temperature itself has been observed. And we were discussed a process for optimizing silicon content to promote a good thermal stability using various tetramethylsilane (TMS) and methane gas at high-temperature. The chemical compositions of silicon-containing DLC film was analyzed using X-ray photoelectron spectroscopy (XPS) before and after heat treatment. Raman spectrum analysis showed the changed structure on the surface after the high-temperature exposure testing. In particular, the hardness of silicon-containing DLC film showed different values before and after the annealing treatment.

Application of Nanoindentation Technique for Characterizing Surface Properties of Carburized Materials (침탄 처리 소재의 표면 분석을 위한 나노압입시험법의 응용)

  • Choi, In-Chul;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.3
    • /
    • pp.139-149
    • /
    • 2022
  • In the automobile and shipbuilding industries, various materials and components require superior surface strength, excellent wear resistance and good resistance to repeated loads. To improve the surface properties of the materials, various surface heat treatment methods are used, which include carburizing, nitriding, and so on. Among them, carburizing treatment is widely used for structural steels containing carbon. The effective carburizing thickness required for materials depends on the service environment and the size of the components. In general, however, there is a limit in evaluation of the surface properties with a standardized mechanical test method because the thickness or cross-sectional area of the carburized layer is limited. In this regard, the nanoindentation technique has lots of advantages, which can measure the mechanical properties of the material surface at the nano and micro scale. It is possible to understand the relationship between the microstructural change in the hardened layer by carburizing treatment and the mechanical properties. To be spread to practical applications at the industrial level, in this paper, the principle of the nanoindentation method is described with a representative application for analyzing the mechanical properties of the carburized material.

Effects of Surface Treatment on Field Emission Properties for Carbon Nanotube Cathodes (탄소나노튜브 캐소드에서 표면처리 방법이 전계방출 특성에 미치는 영향)

  • Seong, Myeong-Seok;Oh, Jeong-Seob;Lee, Ji-Eon;Jung, Seung-Jin;Kim, Tae-Sik;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Carbon nanotube cathodes (CNT cathodes) were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatment on CNT cathodes were investigated for use in high efficiency field emission displays. The optimum surface treatment for a CNT cathode is dependent on a relative bonding force of CNT films on the cathode after a heat treatment. Because of the high bonding force used in the Liquid method, this method is recommended for CNT cathodes which are heat-treated at $390^{\circ}C$ in a $N_2$ atmosphere. The Rolling method is applicable for CNT cathodes fabricated at $350^{\circ}C$ in an atmosphere of air. The results of this study provide basic criteria for the selection of an appropriate surface treatment for large area CNT cathodes.

Thermal diffusion behaviors of electrogalvanized steel sheets (전기아연도금강판의 열확산 거동)

  • 김영근
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.320-328
    • /
    • 1995
  • The electroplated steel sheets were heated during the short periods(10~60 seconds) at high temperature ($360^{\circ}C$$500^{\circ}C$) in order to investigate thermal diffusion behaviors. When the steel sheets were heated for 10 seconds, all the coated layers were alloyed at $420^{\circ}C$ but at temperature lower than $400^{\circ}C$ the $\eta$ phase partially remained on the coated surface. At higher temperature, the longer the time for heat treatment the iron contents were increased in coated layer but the glossiness and whiteness of the coated surface were decreased. While the alloying phases of $\eta$, $\zeta$, $\delta_1$ and $\Gamma$ were appeared in the coated layer at the heat treatment temperature of $360^{\circ}C$, the phase was disappeared at $420^{\circ}C$ but the rests grew in size at the temperature of $440^{\circ}C$. When the heat treatment temperature and heating time were increased, the thickness of $\Gamma$ phase was rapidly increased to 0.8 $\mu\textrm{m}$. The optimum conditions for the heat treatment to prevent powdering of coated layer were obtained to heat it for 30 seconds at $400^{\circ}C$ and 10 seconds at $440^{\circ}C$, and the iron content in coated layer was suited to be 10 percents.

  • PDF

Temperature Prediction of Al6061 Tube in Cryogenic Heat Treatment by CFD Analysis and Experimental Verification (CFD 해석을 이용한 Al6061 튜브의 극저온 열처리 시 소재의 온도 예측 및 실험적 검증)

  • Hwang, Seong-Jun;Ko, Dae-Hoon;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1210-1216
    • /
    • 2011
  • The purpose of this study is to establish the analysis method for prediction of temperature during cryogenic heat treatment. Experimental cryogenic heat treatment is conducted to observe the phenomena such as boiling of fluid, ice layer on the material surface and to measure the temperature distribution of Al6061 tube. The CFD analysis considering the observed phenomena in the experiment is performed to predict the temperature distribution and convection heat transfer coefficient at each stage of cryogenic heat treatment, in which the boiling of fluid is considered as the multi-phase condition of vapour and liquid. The formation of ice layer on the tube surface is also modeled between material and fluid. The predicted results are in good agreement with the experimental ones. From the results, it is shown that the analysis method can predict the temperature distribution and convection heat transfer coefficient during cryogenic heat treatment.

Evaluation of Tool Life for Forging Die due to Lubricants and Suface Treatments (단조 금형의 윤활, 표면처리 및 금형 수명 평가)

  • 김병민
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.211-216
    • /
    • 2002
  • The mechanical and thermal load, and thermal softening occuring by the rush temperature of die, in warm and hot forging, cause wear, heat cracking and plastic deformation, etc. This paper describes the effects of solid lubricants and surface treatments for warm forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatments and lubricants are very important to hot and warm forging process. The main factors affecting die hardness and heat transfer, are surface treatments and lubricants, which are related to heat transfer coefficient, etc. To verify the effects, experiments are performed for heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments, and oil-base and water-base graphite lubricants are used. The effects of lubricant and surface treatment for warm and hot forging die life are explained by their thermal characteristics, and the new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.