• Title/Summary/Keyword: Surface Heat Treatment

Search Result 1,656, Processing Time 0.026 seconds

Effect of Heat Treatment on the Adhesive Strength of Electoless Nickel Deposits (무전해법으로 Slide Glass 위에 도금된 Ni층의 접착력에 미치는 열처리의 영향)

  • Hyun, Yong-Min;Yu, Sung-Yeol;Yoon, Jung-Yun;Kim, Bo-Young;Kim, Sun-Ji;Tahk, Song-Hee;Kim, Hee-San
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.246-249
    • /
    • 2011
  • Surface modification before coating nickel by coupling agents and/or etchant of glass did not provide enough adhesive strength of electroless nickel deposits on glass. Effect of heat treatments on hardness as well as adhesion of nickel deposits was studied by using tape test for adhesion, nanoindenter for hardness and glancing angle x-ray diffractometer (GAXRD) for phase characterization. Heat treatment improved hardness as well as adhesion. XRD results give that the improvements of adhesion and hardness are due to the formation of $NiSiO_4$ around the interface between the nickel deposits and the glass and the precipitation of $Ni_3P$ causing precipitation hardening, respectively. The details in effects of heat treatment on adhesion and hardness are described here.

Study on Effect of Mechanical Machining and Heat Treatment on Surface Residual Stress of TP316L Stainless Steel (TP 316L 스테인리스강의 기계가공 및 열처리에 의한 표면잔류응력 특성 측정 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Keun;Song, Ki-O;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.453-458
    • /
    • 2011
  • We study the effect of mechanical machining and heat treatment on the surface residual stress of TP 316L stainless steel. Electrical discharge machining (EDM), milling and grinding were applied to TP 316L plate specimens. The residual stress and hardness were measured and the effect of heat treatment on the surface residual stress was examined. The residual stress was measured by the X-ray diffraction method, which showed that the surface residual stress was related only to the stress magnitude and was independent of the compressive or tensile component. The surface residual stress was greatly decreased by the heat treatment, but it was not removed completely.

A Study of a Changing of Physical and Chemical Intra-structure on Si-DLC Film during Tribological Test (실리콘 함유 DLC 박막의 마찰마모 시험에 의한 물리적 특성 및 화학적 결합 구조 변화 고찰)

  • Kim, Sang-Gweon;Lee, Jae-Hoon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.3
    • /
    • pp.127-132
    • /
    • 2011
  • The silicon-containing Diamond-like Carbon (Si-DLC) film as an low friction coefficient coating has especially treated a different silicon content by plasma-enhanced chemical vapor deposition (PECVD) process at $500^{\circ}C$ on nitrided-STD 11 mold steel with (TMS) gas flow rate. The effects of variable silicon content on the Si-DLC films were tested with relative humidity of 5, 30 and 85% using a ball-on-disk tribometer. The wear-tested and original surface of Si-DLC films were analysed for an understanding of physical and chemical characterization, including a changing structure, via Raman spectra and nano hardness test. The results of Raman spectra have inferred a changing intra-structure from dangling bonds. And high silicon containing DLC films have shown increasing carbon peak ratio ($I_D/I_G$) values and G-peak values. In particular, the tribological tested surface of Si-DLC was shown the increasing hardness value in proportional to TMS gas flow rate. Therefore, at same time, the structure of the Si-DLC film was changed to a different intra-structure and increased hardness film with mechanical shear force and chemical reaction.

Temperature Prediction for the Wastewater Treatment Process using Heat Transfer Model (열전달 모델을 이용한 폐수처리공정의 온도 예측)

  • Rho, Seung-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1795-1800
    • /
    • 2014
  • The temperature change in the biologically activated sludge wastewater treatment process was predicted using the heat transfer model. All incoming and outgoing heats in wastewater treatment processes were considered. Incoming heats included the solar radiation heat, the heat from impeller mechanical energy, and the biochemical heat in the aeration process. Outgoing heats comprised the radiation heat from the waste itself, the heat of vaporization and surface aeration, the wind convection heat and the conduction heat between the surface and aerator. All heats were used as an input to the existing empirical heat transfer model. The heat transfer model of wastewater treatment processes is presented also. To test the validity of the heat transfer model, the operating conditions of the actual wastewater treatment plant were used. The temperatures were compared with the model temperatures. Model predictions were consistent within the $1.0^{\circ}C$.

On the effects of the characteristics of the titanium oxide to the osteoblast cell culture

  • Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.358-359
    • /
    • 2000
  • Statement of problem. Confusion about the relationship of surface characteristics of implant to osteoblast cell attachment. Purpose. This study attempted to bone cell attachment to the implant surface which was modified by heat. Material and methods. Commercially pure titanium grade 2, $4{\times}4mm$ sheet 40 pieces were treated for 10 minutes with ultrasonic cleaner with methylethyl ketone, ethanol, deionized distilled water, and half of the specimen 20 pieces were heat treated in $980^{\circ}C$ for 15 minutes. All 40 specimens were autoclaves. Total 6 dishes were prepared, 3 dishes were for control group, and the other 3 dishes were for heat treatment. In fourth day, cell account was done. Conculsion. The change of surface characterization by heat treatment could affect the cell attachment in the early stage however, the change of surface characterization would not be prolonged.

  • PDF

The Surface Property Change of the Heat Treated Dental Porcelain Alloy (열처리에 따른 치과도재용 합금의 표면특성에 관한 연구)

  • Nam, Sang-Yang;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • The purpose of this study was carried out by oberserving to composition of an oxide on the surface of Dental porcelain alloy according to the conditions of its heat treatment and analysing the change composition on its surface. Morphological change of the heat treated dental porcelain alloy have been investigated with SEM and EDX. The result of this study is summarized ad follows. The surface indium concentration of specimens increased as the heat treatment temperature and the oxygen partial pressure increased.

  • PDF

Failure Analysis of the Carburized Engine Parts by Microstructural Observation (침탄처리된 엔진 부품의 미세조직학적 파손원인 분석)

  • Sohn, Kyong-Suk;Lee, Sang-Kee;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2005
  • Failure cause of the fractured engine parts was analyzed by microstructural observation. These parts were failed far earlier than the expected service life. By the stereoscope and SEM examinations of the fractured surface, the fracture modes have been identified as wear and fatigue failure. From the observation of microstructure and microhardness measurements of the failed gears, the probable cause for failures are internal oxidation during using and retained austenite and carbide networks due to heat-treatment, respectively. These defected structures at near surface contributed to the wear and fatigue failure.

Study on Improvement of Mechanical Properties after Heat Treatment of Hard Chromium Electrodeposits with Additives (첨가제에 의한 경질 크롬 도금 층의 열처리 후 기계적 특성 향상에 관한 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.116-120
    • /
    • 2014
  • The addition of cyclo propane carbonyl (cpc) to chromium electroplating bath resulted in a chromium deposit which had greatly improved mechanical properties compared to conventional chromium deposits in condition of heat treatment at high temperature. The as-deposited layers had a Vicker's hardness of about 1170, which is comparable to that of conventional chromium plating deposits. With annealing, the hardness goes through a maximum of 1650 at $600^{\circ}C$. Generally speaking, the hardness of conventional plating decreases monotonically with heat treatment. X-ray diffraction show that annealing up to above $400^{\circ}C$ causes formation and growth of chromium crystallites and that chromium carbides form at above $500^{\circ}C$ temperature.

Improvement of Electrodeposition Rate of Cu Layer by Heat Treatment of Electroless Cu Seed Layer (Cu Seed Layer의 열처리에 따른 전해동도금 전착속도 개선)

  • Kwon, Byungkoog;Shin, Dong-Myeong;Kim, Hyung Kook;Hwang, Yoon-Hwae
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.186-193
    • /
    • 2014
  • A thin Cu seed layer for electroplating has been employed for decades in the miniaturization and integration of printed circuit board (PCB), however many problems are still caused by the thin Cu seed layer, e.g., open circuit faults in PCB, dimple defects, low conductivity, and etc. Here, we studied the effect of heat treatment of the thin Cu seed layer on the deposition rate of electroplated Cu. We investigated the heat-treatment effect on the crystallite size, morphology, electrical properties, and electrodeposition thickness by X-ray diffraction (XRD), atomic force microscope (AFM), four point probe (FPP), and scanning electron microscope (SEM) measurements, respectively. The results showed that post heat treatment of the thin Cu seed layer could improve surface roughness as well as electrical conductivity. Moreover, the deposition rate of electroplated Cu was improved about 148% by heat treatment of the Cu seed layer, indicating that the enhanced electrical conductivity and surface roughness accelerated the formation of Cu nuclei during electroplating. We also confirmed that the electrodeposition rate in the via filling process was also accelerated by heat-treating the Cu seed layer.

The Effect of Soil Warming on the Greenhouse Heating Load (지중가온이 온실의 난방부하에 미치는 영향)

  • Nam, Sang-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.