• Title/Summary/Keyword: Surface Heat Treatment

Search Result 1,673, Processing Time 0.035 seconds

Heat treating effect on the magnetic properties of high Silicon Iron by control of surface energy (표면에너지를 이용한 고규소철 합금의 자기적 특성에 미치는 열처리의 영향)

  • Koo, J.M.;Lee, K.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.45-52
    • /
    • 1996
  • Different crystallographic planes, at a gas-metal interface, have different surface energy. To grow the (100) grains of 6.5wt%Si-Fe alloy preferentially, it was heat-treated in the atmosphere of sulfur by using the surface energy. When the specimen is heat-treated for 1 hour at $1175^{\circ}C$ by using the atmosphere of sulfur produced by heating at $75^{\circ}C$, (100) grains were grown to 3.5mm. Owing to the growth of (100) grains, the coercive force was decreased to 2.1 A/mm, and the magnetic induction at 800(A/mm) was increased to 1.61T.

  • PDF

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

Enhanced Properties of Aluminum Oxide Layers with Post Heat Treatment (후열처리에 의한 알루미늄 산화층의 특성 향상)

  • Jeon, Yoonnam;Kim, Sangjun;Park, Jihyun;Jeong, Nagyeom
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.5
    • /
    • pp.275-281
    • /
    • 2019
  • Anodization is widely used to enhance the properties of aluminum, such as hardness, electric resistance, abrasion resistance, corrosion resistance etc. But these properties can be enhanced with additional process. According to the partial crystallization of oxide layer with post heat treatment, enhanced hardness can be expected with partial crystallization. In this study, post heat treatments were applied to the anodized aluminum alloys of Al6061 to achieve the partial crystallization, and crystallizations were evaluated with the reduced breakdown voltages. Interestingly, remarkable enhanced hardness (21~29%), abrasion resistance (26~62%), and reduced breakdown voltage (24~44%) were observed for the sulfuric acid anodized samples when we annealed the anodized samples with 1hour post heat treatment at $360^{\circ}C$. For the Al5052 alloys, a lot of cracks were observed when we applied the post heat treatment.

Isothermal Heat Treatment of AISI 430 Ferritic Stainless Steel after High Temperature Gas Nitriding

  • Park, Sang-Jun;Kim, Jung-Min;Kang, Hee-Jae;Kang, Chang-Yong;Kim, Yung-Hee;Sung, Jang-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.115-120
    • /
    • 2012
  • It has been known that the ferritic stainless steel can be changed to martensitic stainless steel when nitrogen is added. However the high hardness of martensitic stainless steel prevents the plastic deformation. In this study, instead of martensite, the surface microstructure was changed into nitrogen pearlite to increase the plastic deformation easily by isothermal heat treatment after high temperature gas nitriding (HTGN) the AISI 430 ferritic stainless steel. The isothermal treatment was carried out at $780^{\circ}C$ for 4, 6, and 10 hrs, respectively, after HTGN treatment at $1100^{\circ}C$ for 10 hrs. The surface layer of isothermal-treated steel appeared nitrogen pearlite composed with fine chromium nitride and ferrite. Hence, the interior region that was not affected by nitrogen permeation exhibited ferrite phase. When quenching the isothermal treated steel at 1100oC, martensitic phase formed at the surface layer. The hardness of surface layer of isothermal-treated steel and quenched steel measured the value of 150~240 Hv and 630 Hv, respectively.

Surface Treatment in Edge Position of Spheroidal Cast Iron for Mold Materials by Using High Power Diode Laser (High Power Diode Laser을 이용한 금형재료용 구상화 주철의 모서리부 표면처리)

  • Hwang, Hyun-Tae;Song, Hyeon-Soo;Kim, Jung-Do;Song, Moo-Keun;Kim, Young-Kuk
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.457-461
    • /
    • 2009
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature.

Effect of Alkali and Heat Treatments of Ti-6Al-4V Alloy on the Precipitation of Calcium Phosphate (Ti-6Al-4V 합금의 알칼리 및 열처리가 인산칼슘 침착에 미치는 영향)

  • Park, Jae-Han;Lim, Ki-Jung;Kim, Sang-Mok;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.1
    • /
    • pp.187-203
    • /
    • 2000
  • The precipitation of calcium phosphate on implant surface has been known to accelerate osseointegration and to enhance osseous adaptation. The present study was performed to examine whether the precipitation of calcium phosphate on Ti-6Al-4V alloy could be affected by the immersion in NaOH solution and heat treatment. Ti-6Al-4V alloy plates of $15{\times}3.5{\times}1mm$ in dimension were polished sequentially from #240 to #2,000 emery paper and one surface of each specimen was additionally polished with $0.1{\mu}m$ alumina paste. Polished specimens were soaked in various concentrations of NaOH solution(0.1, 1.0, 3.0, 5.0, 7.0, 10.0 M) at $60^{\circ}C$ for 24 hours for alkali treatment, and 5.0 M NaOH treated specimens were heated for 1 hour at each temperature of 400, 500, 600, 700, $800^{\circ}C$. After the alkali and heat treatments, specimens were soaked in the Hank's solution with pH 7.4 at $36.5^{\circ}C$ for 30days.The surface ingredient change of Ti-6Al-4V alloy was evaluated by thin-film X-ray diffractometer(TF-XRD) and the surface microstructure was observed by scanning electron microscope(SEM), and the elements of surface were analyzed by X-ray photoelectron spectroscopy(XPS). The results were obtained as follows ; 1. The precipitation of calcium phosphate on Ti-6Al-4V alloy was accelerated by the immersion in NaOH solution and heat treatment. 2. In Alkali treatment for the precipitation of calcium phosphate on Ti-6Al-4V alloy, the optimal concentration of NaOH solution was 5.0 M. 3. In heat treatment after alkali treatment in 5.0 M NaOH solution, the crystal formation on alloy surface was enhanced by increasing temperature. In heat treated alloys at $600^{\circ}C$, latticed structure and prominences of calcium phosphate layer were most dense. On heat treated alloy surface at the higher temperature(${\geq}700^{\circ}C$), main crystal form was titanium oxide rather than apatite. The above results suggested that the precipitation of calcium phosphate on the surface of Ti-6Al-4V alloy could be induced by alkali treatment in 5.0 M-NaOH solution and by heat treatment at $600^{\circ}C$.