• 제목/요약/키워드: Surface Friction Heating

검색결과 57건 처리시간 0.034초

구리와 알루미늄 이종금속 판재간의 전기저항가열 표면마찰 스폿용접 특성 (Characteristics of Electric Resistance Heated Surface Friction Spot Welding Process of Copper and Aluminum Dissimilar Metal Sheets)

  • 순샤오광;진인태
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.99-109
    • /
    • 2022
  • In this study, an electric resistance-heated surface friction spot-welding process was proposed and tested for the spot-welding ability of copper and aluminum dissimilar metal sheets using electric resistance heating and surface friction heating. This process has welding variables, such as the current value, energizing cycles, rotational speed, and friction time. The current value and energizing cycle can affect the resistance heat, and the rotational speed of the rotating pin and friction time influence frictional heat generation. Resistance heating before friction heating has a preheating effect on the Cu-Al contact interface and a positive effect on preventing friction heat loss during the friction stage. However, because resistance preheating can soften the copper sheet and affect the contact stress and friction coefficient, it has difficulties that may adversely affect frictional heat generation. Therefore, the optimal combination of welding variables should be determined through simulations and experiments of the spot-welding process to determine the effects of electric resistance preheating on the suggested process. Through this procedure, it is known that the proposed spot-welding process can improve the welding quality during the spot welding of Cu-Al sheets.

회전금형을 사용하는 AZ31 마그네슘 합금판재의 전기저항 표면마찰 스폿용접 (Electric Resistance Surface Friction Spot Welding Process of AZ31 Mg Alloy Sheets by Using Rotating Dies)

  • 김태현;;진인태
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.145-153
    • /
    • 2018
  • Magnesium material could be widely used in the automotive industry because of its high strength to weight ratio, but the electric resistance spot welding process of magnesium sheets is difficult because of its low electric resistance and high thermal conduction and thermal expansion. For this reason, an electric resistance surface friction spot welding process using rotating dies is suggested for the spot welding of magnesium metal sheets. This welding method can be characterized by three heating methods: (1) electric resistance heating on contacted surface, (2) surface friction heating by rotating dies, and (3) thermal conduction heating from heated steel electrodes, for the fusion of metal at the interfacial zone between the two magnesium sheets. This welding process also has variables to explore, such as welding currents, diameters of the steel electrode, and rotating dies. It was found that the welding strength could reach industrial requirements by applying a welding current of 11.0kA, with steel electrodes of 12mm diameter, with rotating dies of 4.4 mm diameter, under the condition of a revolution speed of 1200rpm of rotating dies, for the surface friction spot welding process of AZ31 magnesium alloy sheets of 1.4mm thickness.

중첩된 구리 판재의 전기저항가열 표면마찰 점용접(RSFSW)에 관한 연구 (A Study on Electric Resistance Heated Surface Friction Spot Welding Process of Overlapped Copper Sheets)

  • 순샤오광;진인태
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.93-100
    • /
    • 2021
  • Copper sheets has been used widely in electric and electron industry fields because they have good electric and heat conduction property of the material. And, in order to bond copper material, a kind of soldering process is generally used. But, because it is difficult to bond by soldering between overlapped thin copper sheets, so, another kind of brazing bonding process can be used in that case. But, because the brazing process needs wide bonding area, it needs heat treatment process in electric furnace. Generally, for spot welding of sheets, a conventional electric Resistance Spot Welding process(RSW) has been used, it has welding characteristics using contact resistance heating induced by electric current flow between sheets. But, because copper sheets has the low electric resistance, it is difficult to weld by electric resistance spot welding. So, in this study, an electric Resistance heated Surface Friction Spot Welding process(RSFSW) is suggested and is testified for the spot welding ability of thin copper sheets. It is known from the experimental results and simulation that the suggested spot welding process will be able to improve the spot welding ability of copper sheets by the combined three kinds of heating generated by surface friction by rotating pin, and conducted from heated steel electrode, and generated by contact resistance of electricity.

오스테나이트계 스테인레스강의 마찰압접시 압접조직과 열적거동에 관한 연구 (A study on welding structure and thermal behavior in friction welding of austenitic stainless steel)

  • 강춘식;정태용
    • Journal of Welding and Joining
    • /
    • 제8권1호
    • /
    • pp.43-53
    • /
    • 1990
  • The transient temperature distribution in the continuous friction welding 304 stainless steel bars is investigated by experimental and analytical methods. It is calculated by F.D.M. (finite difference method). The heating pressure, the rotational speed and friction coefficient obtained from experiment are used to determine the heat input at the contacting surface. Thermal properties of the workpiece are the function of temperature. The calculated temperature is well coincided with the measured value. The grain size at weld interface is extremely small due to the severe plastic deformation at high temperature, and result of this refined zone reveals higher hardness value. Because the HAZ is very narror about 2-3 mm, welding defects do not occure.

  • PDF

디스크 브레이크 마찰표면의 적열점에 관한 수치적 연구 (Numerical Study on the Hot Spots of Friction Surface in Disk Brakes)

  • 김청균;조승현
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1692-1696
    • /
    • 2004
  • This paper presents the thermally induced hot spot characteristics of rubbing surface in the friction pad disk brake. During the braking period, the rubbing surface with irregular asperities that are strongly engaged in rough surface, wear, and deformed surface due to a friction heating may produce an irregular distorted geometry of the disk surface. The tribological interactions between the disk and the pads are unstable if the contact stress is severe, in which the irregularity develops the contact pressure distribution, leading eventually to localized contact, high temperature and formation of hot spots. The computed results of contact spots that are simulated using a coupled thermal-mechanical analysis present sinusoidal distortions and localized extrusions of the disk surface, which are strongly related to a hot spot in the practical disk brake.

A Study on Surface Treatment for Rubber Materials with Low Friction Factor

  • Li, Xiang-Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제51권1호
    • /
    • pp.43-48
    • /
    • 2016
  • Multi-Surface (MS) treatment is a new technique of surface treatment to reduce the static friction factor on the surface of rubber. MS treatments include 4 methods which names are MS-V (UV-irradiation on the rubber surface), MS-M (doing the chemical reaction with double bond of rubber), MS-Q (dilution of rubber surface by silicone surfactant), and MS-P (coating and heating of rubber surface). The experiment and test of every MS-treatment had been carried out using acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM), and chlorosulphonated rubber (CSM) as rubber materials. It had introduced the steps of every MS-treatment process and the result of the properties test. From the research, it was found that the best method was MS-V treatment because it suited all the samples and the effect was obviously.

꼬임식 테이프가 설치된 사각 덕트에서 스월유동이 미치는 열전달과 마찰계수 (Effects of Swirl Flow Generated by Twisted Tape on Heat Transfer and Friction Factor in a Square Duct)

  • 강호근;아리바시아크리시나 부트라;안수환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.117-120
    • /
    • 2008
  • Numerical simulations and experiment of a hydrodynamic and thermally developed turbulent flow through square ducts (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are conducted to investigate regionally averaged heat transfer and friction factors. Turbulent swirl flows having Reynolds numbers ranging from 8,900 to 29,000, a rib height-to-channel hydraulic diameter(e/D$_h$) of 0.067, and a length-to-hydraulic diameter(L/D$_h$) of 30, are considered. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape has 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Each wall is composed of isolated aluminum sections, and two cases of surface heating are set. The results show that uneven surface heating enhances the heat transfer coefficient over uniform heating conditions, and square ducts with twisted tape inserts plus interrupted ribs produces the best overall transfer performance.

  • PDF

급속가열용 플라스틱 사출금형을 위한 고기능성 표면처리 (High functional surface treatments for rapid heating of plastic injection mold)

  • 박현준;조균택;문경일;김태범;김상섭
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.7-12
    • /
    • 2021
  • Plastic injection molds used for rapid heating and cooling must minimize surface damage due to friction and maintain excellent thermal and low electrical conductivity. Accordingly, various surface treatments are being applied. The properties of Al2O3 coating and DLC coating were compared to find the optimal surface treatment method. Al2O3 coating was deposited by thermal spray method. DLC films were deposited by sputtering process in room temperature and high temperature PECVD (Plasma enhanced chemical vapor deposition) process in 723 K temperature. For the evaluation of physical properties, the electrical and thermal conductivity including surface hardness, adhesion and wear resistance were analyzed. The electrical resistance of the all coated samples was showed insulation properties of 24 MΩ/sq or more. Especially, the friction coefficient of high temp. DLC coating was the lowest at 0.134.

열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향 (The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films)

  • 김광섭;안등태구;김경웅
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.

SKD 11 금형 표면처리에 따른 AZ31 판재 마찰 특성 연구 (Study on the Friction Characteristics for AZ31 Sheet as Various Surface Treatment of SKD11)

  • 장성호;신광호;김흥규;전용준;허영무
    • 소성∙가공
    • /
    • 제19권7호
    • /
    • pp.429-434
    • /
    • 2010
  • The material used is a commercial magnesium based alloy AZ31(Mg-3Al-1Zn) sheet with a thickness of 0.8 mm. Friction tests at various temperatures(R.T. to $200^{\circ}C$) and at various holding forces in the 4 type molds were carried out to investigate the coefficient of friction. A warm drawing process with a local heating and cooling technique was developed in the Mg alloy sheet forming to improve formability because it is very difficult for Mg alloy to deform at room temperature by the conventional method. So, the coefficient of friction at various mold surface treatment conditions in this study was needed to develop the Mg alloy sheet forming technology.