• Title/Summary/Keyword: Surface Deformations

Search Result 211, Processing Time 0.022 seconds

A study on the Analysis of 3D Scanning of Knit Stitches and Modeling System - Jersey, Rib, and Cable Stitches -

  • Choi, Kyoung-Me;Kim, Jong-Jun;Song, Na-Gun
    • Journal of Fashion Business
    • /
    • v.16 no.3
    • /
    • pp.125-135
    • /
    • 2012
  • Since knitted textile products mostly do not require long span of time from the conception to the final products, they have lead the fashion trends during the recent decades. Developments in the textile engineering industries, and computer software and hardware industries have made the 3D virtual clothing software system easily accessible by the fashion/textile industry personnel. The simulated models of apparel products using the state-of-the-art virtual clothing systems are, however, not the replica of real-world garments. Moreover, the garments do not maintain fixed shapes during wearing. Deformations at low external stress lead to difficulties in predicting the behavior of the knitted garments. Therefore, there is a need to compare the differences in appearances, textures, or other related properties between simulated fabrics and actual fabrics. Three knit stitches including jersey, rib, and cable stitches are examined in this study. The differences between fluffy thick yarns and thin yarns are also compared using 3D scanning and surface reconstruction. Obtained three-dimensional data regarding the reconstructed knit specimens would help to build a data base for estimating the behavior of the 3D models of the knitted garments.

SPIN LOSS ANALYSIS OF FRICTION DRIVES: SPHERICAL AND SEMI-SPHERICAL CVT

  • Kim, J.;Choi, K.-H.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.165-172
    • /
    • 2003
  • This article deals with the spin loss analysis of friction drive CVTs, especially for the cases of S-CVT and SS-CVT. There are two main sources of power loss resulting from slippage in the friction drive CVT, spin and slip loss. Spin loss, which is also a main design issue in traction drives, results from the elastic contact deformation of rotating bodies having different rotational velocities. The structure and operating principles of the S-CVT and SS-CVT are first reviewed briefly. And to analyze the losses resulting from slippage, we reviewed previous analyses of the friction mechanism. A modified classical friction model is proposed, which describes the friction behavior including Stribeck (i.e., pre-sliding) effect. It is also performed an in-depth study for the velocity fields generated at the contact regions along with a Hertzian analysis of deflection. Hertzian results were employed to construct the geometric parameters and normal pressure distributions of the contact surface with respect to elastic and plastic deformations. With analytic formulations of the relative velocity field, deflection, and friction mechanism of the S-CVT and SS-CVT, quantitative analyses of spin loss for each case are carried out. As a result, explicit models of spin loss were developed.

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Effect of Propolis on Blood Components and Tissues of Mouse after Low dose X-ray Irradiation

  • Ji Tae-Jeong;Min Byung-In;Seo Eul-Won
    • Biomedical Science Letters
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2006
  • Present study aimed to investigate recovering effect of propolis on blood components and tissues of mouse after low dose irradiation. It is verified that the contents of Fe, Mg, P, Zn and Cu in propolis dosed blood are increased slightly than irradiated blood, however, the contents of Ba and Pb are decreased to one tenth than irradiated blood and the contents of Fe and P are increased to 10% than control group. We consider this result as the propolis acts a role of defence factor minimizing changes of elements caused by irradiation in blood. Among the blood components, Glutamate oxaloacetate transaminase (GOT) value is increased after the radiation but after dosed with propolis and irradiated the value is decreased, suggesting that propolis as a buffering material against irradiation. After dosed with propolis, a number of spermatogenic cells are lowered in testis tissue, however, nucleus and cytoplasm are clearly observed in spermatogonia, spermatocytes and spermatid cells. And nucleus and membrane of cells in the proximal convoluted tubule of renal tissue are clearly observed. Also, cytoplasmand membrane of surface mucous cells in stomach tissue are appeared in normal which is almost like those of control group. We consider that the propolis used in this study is preventing deformations of cells increasing resistance capacity against irradiation rather than recovering damaged tissues.

  • PDF

Fundamental behavior of CFT beam-columns under fire loading

  • Varma, Amit H.;Hong, Sangdo;Choe, Lisa
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.679-703
    • /
    • 2013
  • This paper presents experimental investigations of the fundamental behavior of concrete filled steel tube (CFT) beam-columns under fire loading. A total of thirteen specimens were tested to determine the axial force-moment-curvature-temperature behavior of CFT beam-columns. The experimental approach involved the use of: (a) innovative heating and control equipment to apply thermal loading and (b) digital image correlation with close-range photogrammetry to measure the deformations (e.g., curvature) of the heated region. Each specimen was sequentially subjected to: (i) constant axial loading; (ii) thermal loading in the expected plastic hinge region following the ASTM E119 temperature-time T-t curve; and (iii) monotonically increasing flexural loading. The effects of various parameters on the strength and stiffness of CFT beam-columns were evaluated. The parameters considered were the steel tube width, width-tothickness ratio, concrete strength, maximum surface temperature of the steel tube, and the axial load level on the composite CFT section. The experimental results provide knowledge of the fundamental behavior of composite CFT beam-columns, and can be used to calibrate analytical models or macro finite element models developed for predicting behavior of CFT members and frames under fire loading.

Design and demonstrators testing of adaptive airfoils and hingeless wings actuated by shape memory alloy wires

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.89-114
    • /
    • 2007
  • Two aspects of the design of a small-scale smart wing are addressed in this work, related to the ability of the wing to modify its cross section assuming the shape of two different airfoils and to the possibility of deflecting the profiles near the trailing edge in order to obtain hingeless control surfaces. The actuation is provided by one-way shape memory alloy wires eventually coupled to springs, Shape Memory Alloys (SMAs) being among the most promising materials for this kind of applications. The points to be actuated along the profiles and the displacements to be imposed are selecetd so that they satisfactorily approximate the change from an airfoil to the other and to result in an adequate deflection of the control surface; the actuators and their performances are designed so that an adequate wing stiffness is guaranteed, in order to prevent excessive deformations and undesired airfoil shape variations due to aerodynamic loads. The effect of the pressure distributions, calculated by way of the XFOIL software, and of the actuators loads, is estimated by FE analyses of the loaded wing. Two prototypes are then realised incorporating the variable airfoil and the hingeless aileron features respectively, and the verification of their shapes in both the actuated and non-actuated states, supported by image analysis techniques, confirms that interesting results are achievable with the proposed lay out and design considerations.

Modeling the Water-Block Interaction with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 지하수-암반블록 상호작용 모델링)

  • 김용일
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.149-157
    • /
    • 1999
  • A powerful numerical method that can be used for that purpose is the Discontinuous Deformation Analysis (DDA) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the DDA method have been proposed in the literature, the method is not capable of modeling water-block interaction that is needed when modeling surface or underground excavation in fractured rock. This paper presents a new extension to the DDA method. The extension consists of hydro-mechanical coupling between rock blocks and water flow in fractures. A example of application of the DDA method with the new extension is presented. The results of the present study indicate that fracture flow could have a destabilizing effect on the tunnel stability.

  • PDF

Ultimate Load and Load Distribution of Ground Anchor in Waste Landfill (쓰레기 매립층에서 그라운드 앵커의 극한하중 및 하중분포)

  • Kim, Sung-Kyu;Cho, Kyu-Wan;Kim, Woong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1434-1441
    • /
    • 2005
  • For anchored system applications, each ground anchor is tested after installation and prior to being put into service to loads that exceed the design. This load testing methodology, combined with specific acceptance criteria, is used to verify that the ground anchor can carry the design load without excessive deformations and that the assumed load transfer mechanisms have been properly developed behind the assumed critical failure surface. After acceptance, the ground anchor is stressed to a specified load and the load is locked-off. The two types of load tests conducted during the research program included performance test and creep test which were carried out in accordance with testing procedures by AASHTO(AASHTO 1990) and FHWA(Weatherby 1998) at Samsung-Dong 00 Site. Form the measurements, ultimate load and creep rate of anchors are proposed for straight shaft pressured grouted anchors in waste landfill. The load distribution on the grout was obtained from the measured strain data at each fraction of the ultimate load during the load tests.

  • PDF

A Study on the Robust Optimal Supporting Positions of TFT-LCD Glass Panel (TFT-LCD 용 유리기판의 강건 최적 지지 위치의 선정에 관한 연구)

  • Huh Jae-Sung;Jung Byung-Chang;Lee Tae-Yoon;Kwak Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1001-1007
    • /
    • 2006
  • In this paper we present robust optimal supporting positions for large glass panels used for TFT-LCD monitors when they are stored in a cassette during manufacturing process. The criterion taken is to minimize their maximum deflection. Since they are supported by some supports and have large deformations, contact analysis with a geometrically nonlinear effect is necessary. In addition, the center of a panel can not be positioned exactly as intended and should be considered as uncertainties. To take into account of these effects, the mean and the standard deviation of system response functions, particularly the deflection of the panels, need be calculated. A function approximation moment method (FAMM) is utilized to estimate them. It is a special type of response surface methodology for structural reliability analysis and can be efficiently used to estimate the two stochastic properties, that is, the system performance and the perturbations caused by uncertainties. For a design purpose, they are to be minimized simultaneously by some optimization algorithm to obtain robust optimal supporting positions.

Residual Stress Measurement of Sand Casting by ESPI Device and Thermal Stress Analysis (ESPI 장비를 활용한 사형 주조품의 잔류응력 측정 및 주조 열응력 해석)

  • Kwak, Si-Young;Nam, Jeong-Ho
    • Journal of Korea Foundry Society
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Many studies involving a thermal stress analysis using computational methods have been conducted, though there have been relatively few experimental attempts to investigate thermal stress phenomena. Casting products undergo thermal stress variations during the casting process as the temperature drops from the melting temperature to room temperature, with gradient cooling also occurring from the surface to the core. It is difficult to examine thermal stress states continuously during the casting process. Therefore, only the final states of thermal stress and deformations can be detemined. In this study, specimens sensitive to thermal stress, were made by a casting process. After which the residual stress levels in the specimens were measured by a hole drilling method with Electron Speckle-Interferometry technique. Subsequently, we examined the thermal stresses in terms of deformation during the casting process by means of a numerical analysis. Finally, we compared the experimental and numerical analysis results. It was found that the numerical thermal stress analysis is an effective means of understanding the stress generation mechanism in casting products during the casting process.