• 제목/요약/키워드: Surface Deformation

검색결과 1,975건 처리시간 0.022초

Three dimensional deformation of dry-stored complete denture base at room temperature

  • Lim, Seo-Ryeon;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권4호
    • /
    • pp.296-303
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate whether there is any typical deformation pattern existing in complete denture when it was dried by using the 3D scanner and surface matching program. MATERIALS AND METHODS. A total of 28 denture bases were fabricated with heat curing acrylic resin (each 14 upper and lower denture bases), and 14 denture bases (each 7 upper and lower denture bases) were stored in the water bottle (water stored), and another 14 denture bases were stored in the air (dry stored). Each specimen was scanned at $1^{st}$ day after deflasking, $14^{th}$ day after deflasking, and $28^{th}$ day after deflasking, and digitalized. Three dimensional deformation patterns were acquired by comparison of the data within storage group using surface matching program. For evaluating differences between groups, these data were compared statisticallyusing Kruskal Wallis and Mann Whitney-U test (${\alpha}$=.05). RESULTS. When evaluating 3D deformation of denture base, obvious deformations were not found in maxillary and mandibular water storage group. However, in dry stored group, typical deformation pattern was detected as storage time passes. It occurred mostly in first two weeks. Major deformations were found in the bilateral posterior area in both maxillary and mandibular group. In maxillary dry stored group, a statistical significance was found. CONCLUSION. It was proved that in both upper and lower denture bases, dry storage caused more dimensional deformation than water storage with typical pattern.

자동 메쉬 생성을 적용한 향상된 자유 곡면의 최적 근사 전개 알고리즘 (Improved Optimal Approximated Unfolding Algorithm of a Curved Shell Plate with Automatic Mesh Generation)

  • 유철호;신종계
    • 한국CDE학회논문집
    • /
    • 제11권3호
    • /
    • pp.157-163
    • /
    • 2006
  • Surfaces of many engineering structures, especially, those of ships are commonly made out of either single- or double-curved surfaces to meet functional requirements. The first step in the fabrication process of a three-dimensional design surface is unfolding or flattening the surface, otherwise known as planar development, so that manufacturers can determine the initial flat plate which is required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both single- and double-curved surfaces, is established by minimizing the strain energy of deformation from its planar development to the design surface. The unfolding process is formulated into a constrained nonlinear programming problem, based on the deformation theory and finite element. Constraints are subjected to the characteristics of the fabrication method. And the design surface, or the curved shell plate is subdivided by automatic mesh generation.

미세면 분포 함수 변형을 통한 고품질 실시간 금속 렌더링 (High-quality Realtime Rendering of Metallic Surface with Microfacet Distribution Function Deformation)

  • 강영민
    • 한국게임학회 논문지
    • /
    • 제10권6호
    • /
    • pp.169-178
    • /
    • 2010
  • 본 논문은 실시간 응용 프로그램에서 사실적인 금속 재질을 렌더링하기 위한 효과적인 기법을 제안한다. 제안된 기법은 금속면의 미세한 흡집을 표현하기 위해 법선 벡터를 섭동(perturbation)하는 방법을 사용한다. 법선 벡터를 섭동하는 일반적인 방법은 범프(bump) 매핑이나 법선(normal) 매핑 등의 방법을 사용하는 것이다. 그러나 이러한 방식은 이방성 반사 특성을 갖는 표면에서는 사실적인 빛의 산란을 보이지 못한다. 금속 특유의 반사를 표현하기 위해서는 미세면 분포 함수를 이용하여 이방성 반사 특성을 모델링하는 것이 일반적이므로 일반적 법선 섭동만으로는 만족스런 결과를 얻지 못한다. 본 논문은 법선 벡터의 섭동과 함께 미세면 분포 함수를 변형하는 기법을 통해 매우 사실적인 금속면 재질 렌더링이 가능한 기법을 제안한 다. 제안된 기법은 쉽게 GPU 프로그램으로 구현되며, 실시간 환경에서 동작한다.

입방정계 순 금속 Fe, Cu의 미끄럼 마멸 거동 (Sliding Wear Behavior of Pure Metal, Fe and Cu Having a Cubic Crystal System)

  • 이슬기;김용석
    • 소성∙가공
    • /
    • 제19권6호
    • /
    • pp.357-362
    • /
    • 2010
  • Dry sliding wear behavior of pure Fe and Cu which have BCC and FCC crystal structure, respectively, was investigated. The wear characteristics of the pure metals with different crystal structure were compared. Dry sliding wear tests were carried out using a pin-on-disk wear tester at various loads under the constant sliding speed condition of 0.15 m/s against a silica ball at room temperature. Sliding distance was fixed as 600 m for all wear tests. Wear rate of a specimen was calculated by dividing the weight loss of the specimen after the test by the specific gravity and sliding distance. Worn surfaces and wear debris were analyzed by SEM. The wear of both pure Fe and Cu proceeded with surface deformation, resulting in similar wear rates despite of their structure difference under the current test conditions. Wear rates of both metals were low if the surface deformation due to wear forms thick surface-deformation layer that is strain hardened beneath the wearing surface. The pure Cu specimens showed a lot of oxides on the worn surface when tested at low loads less than 5 N, which resulted in very low wear rate.

반도체 웨이퍼의 스트레스 측정을 위한 공정 및 표면 검사시스템 구현 (Implementation of process and surface inspection system for semiconductor wafer stress measurement)

  • 조태익;오도창
    • 대한전자공학회논문지SD
    • /
    • 제45권8호
    • /
    • pp.11-16
    • /
    • 2008
  • 본 논문에서는 먼저 RTP(Rapid Thermal Processor) 장치를 스트레스 측정에 용이한 구조로 제작하고 PC에서 통합 공정관리 시스템을 설계하였다. 다음으로는 Large deformation 이론을 바탕으로 반도체 웨이퍼 표면의 변형검사를 위한 레이져 인터페로미터리를 구성하였다. 궁극적으로 이러한 레이져장치로부터 웨이퍼 표면의 영상을 추출하고 세선화, 블록화 그리고 스트레스 분포도의 순서로 영상처리 하여 스트레스로 인한 웨이퍼 표면의 변형을 검사하였다. 실험을 하기 위해 변형이 이루어지도록 웨이퍼의 후면을 1mm정도 갈아낸 후 약 1000도에서 $3\sim4$회 열처리를 수행하였으며, 열처리를 가한 영상과 가하지 않은 영상을 통하여 웨이퍼 열처리 후 심각한 변형이 이루어졌음을 알 수 있었다.

자성유체의 자유표면의 변형에 관한 수치해석 (Numerical Analysis on the Deformation of Free Surface of Magnetic Fluid)

  • 남성원;신산신일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.132-137
    • /
    • 1995
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented.

  • PDF

변형 에너지가 나노압입 유기 Hillock 현상에 미치는 영향 (Effect of Deformation Energy on the Indentation Induced Etch Hillock)

  • 김현일;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.225-228
    • /
    • 2005
  • The purpose of this study is to investigate effects of the plastic/elastic deformation energy on wet etching characterization on the surface of material by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex 7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wt\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (normal load, loading rate) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies.

  • PDF

변형 이론을 기반으로한 곡면의 최적 근사 전개 (Optimal Approximated Development of General Curved Plates Based on Deformation Theory)

  • 유철호;신종계
    • 한국CDE학회논문집
    • /
    • 제7권3호
    • /
    • pp.190-201
    • /
    • 2002
  • Surfaces of many engineering structures, specially, those of ships and airplanes are commonly fabricated as doubly curved shapes as well as singly curved surfaces to fulfill functional requirements. Given a three dimensional design surface, the first step in the fabrication process is unfolding or planar development of this surfaces into a planar shape so that the manufacturer can determine the initial shape of the flat plate. Also a good planar development enables the manufacturer to estimate the strain distribution required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both singly and doubly curved surface is developed in the sense that the strain energy from its planar development to the design surface is minimized, subjected to some constraints. The development process is formulated into a constrained nonlinear programming problem, which is on basis of deformation theory and finite element. Constraints are subjected to characteristics of the fabrication method. Some examples on typical surfaces and the practical ship surfaces show the effectiveness of this algorithm.

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제48권4호
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

Warping thermal deformation constraint for optimization of a blade stiffened composite panel using GA

  • Todoroki, Akira;Ozawa, Takumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.334-340
    • /
    • 2013
  • This paper deals with the optimization of blade stiffened composite panels. The main objective of the research is to make response surfaces for the constraints. The response surface for warping thermal deformation was previously made for a fixed dimension composite structure. In this study, the dimensions of the blade stiffener were treated as design variables. This meant that a new response surface technique was required for the constraints. For the response surfaces, the lamination parameters, linear thermal expansions and dimensions of the structures were used as variables. A genetic algorithm was adopted as an optimizer, and an optimal result, which satisfied two constraints, was obtained. As a result, a new response surface was obtained, for predicting warping thermal deformation.