• Title/Summary/Keyword: Surface Deflection

검색결과 418건 처리시간 0.025초

고속 볼 엔드밀링의 가공면 특성에 관한 연구 (A Study on the Characteristic of Machined Surface by High Speed Ball End Milling)

  • 최종근;양민양;윤재웅
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.126-134
    • /
    • 2001
  • Recently, high productivity and cost reduction becomes the most important target of industries due to the worldwide economic competition. One of these efforts is High Speed Machining(HSM), which reduces machining time with the increase of machining speed such as cutting speed and feedrate. It is very important, especially in case that the portion of machining time in production cost is high. This research suggests optimum cutting conditions to reduce cutting time with minimizing term error. For this study, a comprehensive model representing the texture of machining surface is developed, including rubbing phenomenon on the tip of ball end mill and expanded fibbing zone trajectory caused by tool deflection. Experiments show that the suggested set of feed and pick feed is optimum for maintaining the surface roughness identified by rubbing and low cutting speed in minimum.

  • PDF

유연성 디스크 정밀연삭 가공중 평면가공에 관한 연구 (A Study on the Flat Surface Generation Using Flexible Disk Grinding)

  • 유송민
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.158-166
    • /
    • 1996
  • In this study, a flexible disk grinding process is applied in order to produce high precision product. A new model was developed considering feed motion along horizontal and vertical direction. Different types of feed speed variation was tested with respect to distinct process stages in order to achieve flat surface. It was observed that highest order polynomial form for both horizontal and vertical feed speed variation among the proposed categories produced surface close to flat one. Disk deflection trend during the process was visualized confirming the proposed scheme. Cutting force and VRR(volume removal rate) was observed as an aid to process planning.

  • PDF

함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구 (Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder)

  • 백부근;안종우;박영하;;송재열;고윤호
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

코너부의 펜슬가공시 볼엔드밀의 공구변형 특성 (Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner)

  • 왕덕현;윤경석
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

회피 기동에 강인한 수상 항적 탐색 방법 (Robust Ship Wake Search Method in the Target Evasion Environment)

  • 구본화;이영현;박정민;정석문;홍우영;김우식;임묘택;고한석
    • 한국군사과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.8-17
    • /
    • 2009
  • This paper proposes robust ship wake search method in the target evasion environment. Moving surface ships generate a long trailing wake in the rear of a surface ship. Wake homing torpedo sensing this wake can detect the surface target and engage it automatically. In wake homing torpedo, wake search method is important element to maximize effectiveness of wake homing torpedo. This paper proposes one-side, two-side and centering mode according to passing wake boundary scenarios. Also, wake deflection angle is deduced by using the principle of deflection angle of acoustic torpedo. The representative experimental results using monte-carlo simulation demonstrate that the searching method using one-side mode is superior to two-side and centering mode in the target evasion environment.

윤곽밀링시 공구변형에 의한 절삭표면 형상의 예측 (Prediction of the Milled Surface Shapes Considering Tool Deflection Effects in Profile Milling Process)

  • 서태일;조명우
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.203-209
    • /
    • 1999
  • In this paper, we present the methods to predict the milled surface shapes in profile milling process. In the cutting process, tools are deflected due to the cutting forces varying with the imposed depth of cut and feedrate. Thus, the final shapes of the milled surface, generated by the nominal tool trajectory, are different from the required profile. In order to predict the milled surface shapes, we present two methods based on: (1) the deflected tool profile and (2) the trace of contact point between the tool and the workpiece. In the first method, we make an assumption that the milled surface corresponds to the deflected tool profile. In another method, we make we make an assumption that the milled surface is generated by the trace of the contact point between the cutting edge of the tool and workpiece. We present the surface generation process by calculating the trajectory of the contact points on the workpiece. Several simulations and experiments are performed to verify the proposed milled surface prediction methods.

  • PDF

자동차 외판의 미세면굴곡 거동의 수치해석적 평가 (A Numerical and Experimental Study of Surface Deflections in Automobile Exterior Panels)

  • 박춘달;정완진;김병민
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.134-141
    • /
    • 2006
  • Surface deflections have a great effect on the external appearance of automobiles. Usually, they are occurred on large flat panels containing sudden shape changes and of very small size about $\pm$30$\sim$300$\mu$m. Since the current numerical method is not sufficient for predicting these defects, the correction of these defects still depends on trial and error, which requires a great deal of time and expense. Consequently, developing the numerical method to predict and prevent these defects is very important far improving cosmetic surface qualities. In this study, an evaluation system that can analyze surface deflections using numerical simulation and a visualization system are reported. To calculate the surface deflections numerically, robust algorithms and simulation methodologies are suggested and to visualize them quantitatively, the curvature variation algorithm is proposed. To verify the developed systems, the experimental die of the handle portion of exterior door is analyzed. The results showed that the experimental and simulational visualization are in good agreement. Compensation methods to correct the surface deflections are also tested. The evaluation system proposed in this paper could be used to predict and minimize the occurrence of surface deflections in die manufacturing.

초경합금재 와이어컷 방전가공시 두께변화에 따른 가공 특성 (Machining Characteristics According to the Thickness Change When Wire-cut Electrical Discharge Machining of Tungsten Carbide)

  • 이재명;김원일;이윤경;왕덕현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.820-823
    • /
    • 2000
  • The characteristics of wire deflection, surface roughness and roundness were observed on changing discharge time for electrical discharge machining(EDM) of tungsten carbide in various conditions of thickness. The wire deflection was decreased as increasing discharge time and wire tension, the gap of deflection was decreased after thickness 60mm and discharge time of 6$\mu\textrm{s}$ due to the changing from fundamental mode to vibration mode. The deflection is the smallest at the water specific resistivity of 7.5 kΩ ㆍcm. The deflection is found to be decreased as increasing dwell time, and the result is due to the vibration of the pressure and the amount of the dielectric. The component of copper(Cu) and zinc(Zn), which is the main material of wire electrode, was observed for rough wire-cutting EDM of STD-11. This phenomena is found to be decreased as the number of EDM is increased. But it will be improved by changing the material and the shape of wire. The roundness of middle is found to be worse than that of upper and it is increased as the thickness of material is increased.

  • PDF

Numerical modelling of stress and deflection behaviour for welded steel beam-column

  • Soy, Ugur
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.249-260
    • /
    • 2012
  • In this study, stress and deflection behaviours of T-type welding joint applied to HE200M steel beam and column were investigated in finite element method (FEM) under different distributed loads. In the 3D-FEM modelling, glue option was used to contact between steel materials and weld nuggets. Geometrical model was designed as 3-dimensional solid in ANSYS software program. After that, homogeneous, linear and isotropic properties were used to design to materials of model. Solid-92 having 3-dimensional, 4 faced and 10-noded was selected as element type. In consequence of mesh operation, elements of 13285 and nodes of 28086 were occurred. Load distribution was applied to top surface of steel beam to determine behaviours of stress and deflection. As a result of FEM analysis applied with the loads of 55,000 N, 110,000 N and 220,000 N, maximum values were obtained as 116 N/$mm^2$, 232 N/$mm^2$ and 465 N/$mm^2$ for stress and obtainedas 1,083 mm, 2,166 mm and 4.332 mm for deflection, respectively. When modelling results and classical calculation values were compared, it was obtained difference of 10 % for stress values and 2.5% for deflection values.