• Title/Summary/Keyword: Surface Crack of Metal

Search Result 166, Processing Time 0.03 seconds

The Errect of Interfacial Structure on the Bonding Strength in ${Al}_{2}{O}_{3}$/304 Joint (${Al}_{2}{O}_{3}$/304스트레인레스강 접합체 계면구조가 접합강도에 미치는 영향)

  • Kim, Byeong-Mu;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.282-291
    • /
    • 1993
  • Joining ${Al}_{2}{O}_{3}$ and STS 304 stainless steel by active metal brazing method with using CuI Owt % Ti and Cu -7 .5wt % Zr insert metal, their interfaces were analyzed and strength of the joint brazed with Cu-7.5wt % Zr insert metal also investigated with shear strength testing method. In brazing with Cu-lOwt% Ti insert metal, the single reaction layer was formed by the reaction with Ti and ${Al}_{2}{O}_{3}$ at the interface between ${Al}_{2}{O}_{3}$ and insert metal, but the double reaction layer was found in brazing with Cu-7.5wt % Zr insert metal because of the difference of their wettability on the surface of ${Al}_{2}{O}_{3}$. Fracture shear strength about 86MPa was obtained from ${Al}_{2}{O}_{3}$/Cu-7.5wt% Zr/STS 304 stainless steel joint and reasonable strength of the joints is attributed to the formation of double reaction layer at the interface.

  • PDF

Friction Weldability of Grey Cast Iron - by the Concept of Friction Weld Heat Input Parameter - (회주철의 마찰용접 특성에 관한 연구 - 입열량 이론식을 중심으로 -)

  • Jeong, Ho-Shin;Bang, Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.95-101
    • /
    • 2014
  • Joining of grey cast iron by fusion welding has much difficulties for its extremely low ductility and low toughness because of the flake form of the graphite. And the brittle microstructure, i.e. ledeburite may be formed during fusion welding by its rapid cooling rates. By these kinds of welding problem, preheat and post heat treatment temperature must be increased to avoid weld crack or welding problems. In order to avoid these fusion welding problem, friction welding of cast iron was carried out for improving joint soundness, establishing friction welding variables. There is no factor for evaluating friction weldability in continuous drive type friction welding. In this point of view, this study proposed the parameters for calculating friction weld heat input. The results obtained are as follows ; 1. There was a close relationship between tensile strength and flash appearance of friction welded joint. 2. Tensile strength was decreased and flash was severely oxidized as increasing frictional heating time. 3. As increased forging pressure $P_2$, flash had a large crack and tensile strength was decreased. 4. As powdered graphite by rotational frictional force induced flat surface and hindered plastic flow of metal, tensile strength of welded joint was decreased. 5. Heat input for continuous drive type friction welding could be calculated by the factors of $P_1$, $P_2$ and upset distance(${\delta}$).

Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC (고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성)

  • Han, Choonsoo;Chae, Gil-Byung;Lee, Chang-Rae;Choi, Dae-Kyu;Shim, Joongpyo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.118-127
    • /
    • 2012
  • TiN or Ti/TiN was coated on stainless steel as bipolar plate in polymer electrolyte membrane fuel cells (PEMFCs) to improve their corrosion resistance and electric conductivity, and their properties were examined under fuel cell operating condition. After 200 hours operation, the behaviors for the corrosion, crack and dissolution of coating layer were investigated by various techniques. The corrosion and exfoliation of coating layer were considerably generated except for SUS316L-Ti/TiN after fuel cell operation even if the electric conductivity and corrosion resistance of coated stainless steel bipolar plates were improved. The adoption of Ti layer between TiN layer and the surface of stainless steel enhanced the adhesion of TiN layer and decreased the possibility of corrosion by the increase of coating layer.

Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports (표면 개질된 지지체를 이용한 Cu3(BTC)2 튜브형 분리막의 용매열 합성 및 특성분석)

  • Noh, Seung-Jun;Kim, Jinsoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.214-218
    • /
    • 2014
  • In this study, nanoporous $Cu_3(BTC)_2$ membranes were synthesized on macroporous alumina tube supports by solvothermal method. It is very difficult to prepare uniform and crack-free $Cu_3(BTC)_2$ layer on macroporous alumina support by in situ solvothermal method. In this study, continuous and crack-free $Cu_3(BTC)_2$ tubular membranes could be obtained by in situ solvothermal process after surface modification of alumina support. The surface modification was conducted by spraying Cu precursor solution on the alumina support heated at $200^{\circ}C$. The prepared $Cu_3(BTC)_2$ tubular membranes were characterized by XRD, FE-SEM and gas permeation experiments. $H_2$ permeance through $5{\mu}m$ thick $Cu_3(BTC)_2$ tubular membrane was calculated to be $7.8{\times}10^{-7}mol/s{\cdot}m^2{\cdot}Pa$ by single gas permeation test, with the ideal selectivities of $H_2/N_2=11.94$, and $H_2/CO_2=12.82$.

Effect of $Al_2O_3$ and $Fe_2O_3$ Tribological Properties of Reaction Bonded SiC (반응 소결 SiC 소결체의 마찰마모특성에 미치는 첨가제 $Al_2O_3$$Fe_2O_3$ 의 영향)

  • 백용혁;박홍균
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1069-1075
    • /
    • 1994
  • When ceramics are used as the parts of an engine and a machine, the tribological properties are very important. For the preparation of the resistance material for wear applications by the method of Reaction-Bonded Sintering, metal silicon and carbon black are mixed up into SiC powder, and Al2O3 and Fe2O3 are put as an additive. As the general properties, the bending strength and water absortion are measured in the normal temperature and the phase changies are investigated with XRD. The property of the resistance for wear applications is measured with the amount of friction and wear, friction coefficient and maximum asperties. And, the surface of wear is observed with SEM. With the results of this study, the optimal mol ratio of Si : C and the suitable quantity of the mixture of SiC are 7 : 3 and 40 wt%, respectively. In the case of the addition of Al2O3 (2 wt%), the resistance for friction and wear applications is prominent. The bending strength showed the highest peak when Al2O3 (4 wt%) and Fe2O3 (4 wt%) were added. The properties of friction and wear were related with the propagation velocity of crack rather than the bending strength.

  • PDF

Development of the Heat-Resistant Functionally Gradient Material with Metal Substrate (금속기지 내열 경사기능 복합재료 개발에 관한 연구)

  • Kim, Bu-Ahn;Nam, Ki-Woo;Cho, Mun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.62-69
    • /
    • 1999
  • 67Ni-22Cr-10Al-1Y and $ZrO_2-8Y_2O_3$ were coated on the substrate surface of ST304 and Al2024 by the plasma spraying method. The adgesion of the films varies depending on the substrates and the laminating method. In the case of STS304, the cracks were observed at thermal shock temperature difference ${Delta}T$ of $900^{circ}C$ in the non functionally gradient material(NFGM) and at $1100^{circ}C$ in the functionally gradient material(FGM). The film adhesion of the FGM is better than that of the NFGM in ST304. The cumulative AE count of the FGM of STS304 increased continuously at the bending test. But the NFGM of STS304 showed discontinuity of the AE count. The total AE count for the FGM of STS304 decreased as the number of thermal shock increased, and this tendency was evident as the thermal shock temperature difference increased.

  • PDF

Effects of Friction Pressure on Bonding Strength and a Characteristic of Fracture in Friction Welding of Cu to Cu-W Sintered Alloy (동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접에서 마찰압력이 접합강도와 파단특성에 미치는 영향)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.90-98
    • /
    • 1997
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of friction pressure on bonding strength and a charicteristic of fracture. The tensile strength of the friction welded joint was increased up to 90% of the Cu base metal under the condition of friction time 1.2 sec, friction pressure 4.5kgf/$\textrm{mm}^2$ and upset pressure 10kgf/$\textrm{mm}^2$. From the results of fracture surface analysis, the increase of friction pressure could remarkably decrease the force and the time to be normally acted on weld interface. The W particles which were included in the plastic zone of Cu side could induce fracture adjacent to the weld interface because their existance in Cu induces a decrease in available section area and an increase in notch effect. Therefore, the tensile strength was decreased at high friction pressure (6kgf/$\textrm{mm}^2$) because the destruction of W was increased by an increase in mechanical force and crack was formed at weld interface.

  • PDF

Mechanical Property and Microstructure of the Annealed Fe-Si Alloy Manufactured by Laser-Powder Bed Fusion (L-PBF 공정 처리된 Fe-Si 합금의 열처리 조건에 따른 미세조직 및 기계적 특성)

  • J. Y. Park;M. S. Gwak;S. G. Jeong;H. S. Kim;J. G. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • To overcome a climate change, manufacturing complex-shaped electric mobility parts becomes one of the important issues for enhancing a performance of motor with reducing their weight. Therefore, development of laser-based additive manufacturing shed on light due to their flexible manufacturing capacity that can be suitable to solve the poor formability of Fe-Si alloys for electric mobility parts. Although there are several studies existed to optimize the performance of additively manufactured Fe-Si alloys, the post-annealing effect was not well investigated yet though this is important to control the texture and mechanical properties of additively manufactured parts. In the present work, annealing effect on the mechanical property and microstructure of additively manufactured Fe-4.5Si alloy was investigated. Because of the ordered phase initiation after annealing, the hardness of additively manufactured Fe-4.5Si alloy increased up to 1173 K while a hardness drop occurs at the 1273 K condition due to the micro-crack initiation. The response surface methodology result represents the 1173 K-5 h sample is an optimal condition to maximize the mechanical property of additively manufactured alloy without micro-cracks.

MAGNESIUM TWB PANEL WITH LASER WELDING FOR AUTO BODY ASSEMBLY (차체 제작을 위한 레이저용접 마그네슘 TWB 판넬)

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1312-1316
    • /
    • 2007
  • Strip casted and rolled magnesium sheet is become exiting material for car manufacturer, due to its better formability and specific strength compare with conventional extruded sheet. TWB technology was attractive for car body designer, because it saves the weight of the car without strength loss. In this study, the laser welding performance of magnesium sheet was investigated for Mg TWB panel manufacturing. The material was strip casted and rolled magnesium alloy sheet contains 3 wt% Al and 1 wt% Zn (AZ31). Lamp pumped Nd:YAG laser of 2kW was used and its laser light was delivered by optical fiber of 0.6mm core diameter to material surface with focusing optics of 200mm focal length for TWB welding. The microstructure of weld bead was investigated to check internal defects such as inclusion, porosity and cracks. Also mechanical properties and formability were evaluated for press forming of car body. For the results, there was no crack but inclusion or porosity on weld at some conditions.The tensile strength of weld was over 95% of base metal. Inner and outer panel of engine hood were press formed and assembled at elevated temperature.

  • PDF

Microproperties and Fracture Behavior of Galvannealed Coating Layer of Automobiles (자동차용 합금화 용융아연도금강판의 도금층 미소물성 및 파괴 거동)

  • Park, Chun-Dal;Ko, Dae-Cheol;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.91-99
    • /
    • 2007
  • Fractures of galvannealed coating layer during actual press forming in automotive applications were observed by scanning electron microscopy in order to understand fracture mechanism. Fracture behaviors of galvannealed coating layer in extra deep drawing quality steels and high strength steels have been studied by performing the tests describing the representative plastic deformation in sheet metal forming such as uni-axial tensile test, compression test, bi-axial test and plane strain test. Growth and direction of cracks were deeply related to the plastic deformation modes and history. The material properties of galvannealed coating layer were investigated by nano-indentation test equipped with Berkovich diamond indentor for the specimens. Hardness and elastic modulus of the coating layer were higher than bared steels and that was the reason for crack of coating layer. Flat friction test and drawbead friction test were performed to observe the effect of the surface morphology on the frictional characteristics. The micro-plasto hydrodynamic lubrication were appeared and played an important role in reducing the coefficient of friction.