• Title/Summary/Keyword: Surface Crack

Search Result 1,989, Processing Time 0.027 seconds

A Fatigue Life Prediction by Growth Characteristics of a Small Surface Crack (작은 표면균열의 성장특성에 의한 수명예측)

  • Suh, Chang-Min;Lim, Chang-Soon;Gang, Yong-Gu
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.108-117
    • /
    • 1989
  • This paper deals with a fatigue life prediction of a surface crack based on the experimentally obtained relationship between surface crack length ratio $a/a_{f}$ and cycle ratio $N/N_{f}$ using micro computer. Firstly $a/a_{f}$-$N/N_{f}$ curves obtained from experimental tests, were assumed as three curves UC(the upper limit curve), LC(the lower limit curve) and MC(the middle curve), and these were utilized to predict the fatigue life. Comparing the calculated values which represent the characteristics of crack growth behaviors from the three assumed curves with the experimental ones, it has been found that in the stable crack growth region, they coincide reasonably well each other. And the differences between the fatigue lives obtained from the assumed curves and the experimental fatigue life did not exceed 20%. Using the characteristics of $a/a_{f}$-$N/N_{f}$ curves, it is possible to predict the da/dN-Kmax curves and the S-$N_{f}$ curves.

  • PDF

Effect of Flaw Characterization on the Structural Integrity Evaluation Under Pressurized Thermal Shock (가압열충격 사고시 결함 이상화 방법이 구조물 건전성 평가에 미치는 영향)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.275-282
    • /
    • 2001
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement. Number of subclad cracks may be found during an in-service-inspection due to the presence of cladding. It is specified, in ASME Sec. XI, that a subclad crack is characterized as a surface crack when the thickness of the clad is less than 40% of the crack depth. This condition is provided to keep the crack integrity evaluation conservative. In order to refine the fracture assessment procedures for such subclad cracks under a pressurized thermal shock condition, three dimensional finite element analyses are applied for various subclad cracks existing under cladding. A total of 36 crack geometries are analyzed, and the results are compared with those for surface cracks. The resulting stress intensity factors for subclad cracks are 6 to 44% less than those for surface cracks. It is proven that the flaw characterization condition as specified in ASME Sec. XI can be overly conservative for some subclad cracks.

Fatigue Behavior of Before-and-After Penetration of Aluminium Plate with Long Surface Crack (긴 균열을 갖는 알루미늄판재의 관통전후 피로거동)

  • Nam Ki-Woo;Lee Jong-Rark;Ahn Seok-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Fatigue behavior of before-and-after penetration was examined experimentally using surface pre-cracked specimens of aluminium alloy 5083-0. The fatigue crack shape before penetration is almost semicircular, and the measured aspect ratio is larger than the value obtained by calculation using K values proposed by Newman-Raju. It is found that the crack growth behavior on the back side after penetration is unique and can be divided into three stages. By using a crack propagation rule in case of long surface crack, the change in crack shape after penetration can be evaluated quantitatively.

  • PDF

A Study on the Life Span Prediction of Railroad Wheels caused by Rolling Contact Fatigue (철도차륜의 구름접촉피로에 의한 수명예측에 관한 연구)

  • Chun, C.K.;Yang, J.S.;Park, S.J.;Yi, G.S.;Ma, Y.S.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1012-1020
    • /
    • 2006
  • The crack that occurs on the wheels of railroad cars can be categorized into a surface crack that starts from the surface or a subsurface crack that starts from the inside and can be detrimental to safe railroad operations. Therefore, estimating the growth life span of this type of crack is very important. In this research, the stress distributions, displacements, and the growth-life spans of both surface cracks and subsurface cracks have been studied. By using the finite element analysis, especially in the life span prediction process, the stress conditions and the stress intensity factors of the crack tip have been discovered. The Paris formula has been used to analyze the growth-life span prediction.

  • PDF

Surface Crack Behavior and the Fatigue Life Prediction of Notched Specimens (표면균열의 거동과 피로수명예측에 관한 연구)

  • 서창민;이정주;정은화;박희범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1097-1103
    • /
    • 1988
  • This paper deals with surface crack behavior and the fatigue life prediction of notched specimens using the relation between surface crack length, a, and the cycle ratio, $N/N_{f}$. From the $a-N\;/\;N_{f}$ curves, UC(the upper limit curve), LC(the lower limit curve) and MC(the middle limit curve) were assumed and utilized to predict the fatigue life and crack growth rate. The data computed from the three assumed curves were compared with the experimental data. It has been found that in the stable crack growth region ($N/N_{f}=0.3-0.8$) fatigue life can be predicted within 20% errors. Using the characteristics of $a-N\;/\;N_{f}$ curve, it is possible to predict the $da/dN-K_{max}$ curve, the $da/dN-{\Delta}K_{{\varepsilon}_t}$ curve, and the $S-N_{f}$ curve.

A study on the Faigue Behavior and Mechanism of High Hardened Steel (고판도강재의 피로거동과 기구)

  • ;Song, Sam Hong
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.3
    • /
    • pp.116-123
    • /
    • 1979
  • On the basis of optical microscope and electro microscope observation for the fatigue fracture process of medium corbon martensitic structure produced by rapid heat treatment, mainly the abstracts of the studied results for the morphology of fatigue crack initiation process of high hardened steel are summarized as follows. Fatigue crack initiated from inclusion on the surface or subsurface. Above all the crack which initiated from inclusion exposed on the surface in as follows. (1) fatigue crack initiated from the boundary of the matrix and inclusion. (2) fatigue crack initiated at surrounding of small pit by drop out of inclusion.

Validation of 3D crack propagation in plain concrete -Part I: Experimental investigation - the PCT3D test

  • Feist, C.;Hofstetter, G.
    • Computers and Concrete
    • /
    • v.4 no.1
    • /
    • pp.49-66
    • /
    • 2007
  • The objective of this paper is to provide experimental data on the propagation of curved crack-surfaces and the respective load-displacement diagrams for the validation of numerical models for cracking of concrete, subjected to three-dimensional stress states. To this end beam-shaped specimens are subjected to combined bending and torsional loading, leading to the formation of a spatially curved crack-surface. The experimental data contain the evolution of the load and of the strains at selected points in terms of the crack mouth opening displacement and the propagation of the crack surface.

A Study on Propagation Behavior of Surface-Fatigue-Crack in the Mild Steel at Elevated Temperatures (軟鋼의 高溫 表面渡勞균열 成長擧動에 관한 硏究)

  • ;;北川英夫
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.425-433
    • /
    • 1983
  • Fatigue tests by axial loading (R=0.1) were carried out to investigate fatigue crack growth properties of small surface cracks in mild steel at room temperature, 250.deg. C and 400.deg. C, by using flat specimens with a small artificial pit. All the data of the fatigue crack growth rate obtained in the present tests are determined as a function of the stress intensity factor range, so that the applicability of liner fracture mechanics to the fatigue crack growth of surface cracks at elevated temperatures is investigated and discussed in comparison with the data of type 304 stainless steel at room temperature and elevated temperature. The obtained results are as follows: 1) Relations of both surface fatigue crack length and its depth to cycle ratio fall within a narrow scatter band in spite of different stress levels. 2) The .DELTA. .sigma. .root. .pi. a-da/dN relation of surface fatigue crack growth at room temperature is independent of the stress level and can be plotted as a straight line at log-log diagram, but the relation at 400.deg. C depends partly on the stress level. 3) Relations of the fatigue crack growth into depth d(2b)/dN and is stress intensity factor range .DELTA. $K_{I}$, accounted for the aspect ratio variation, fall within a narrow scatter band for wide range of the applied stress levels. And .DELTA. $K_{I}$E-d(2b)/dN relations of mild steel at different stress level coincide relatively well with the data of type 304 stainless steel. 4) The value of aspect ratio obtained by a beach mark method and a temper coloring method approaches about 0.9 in common with crack growth and it is independent of stress level and temperatures. 5) The equi-crack length curve is parallel to S-N$_{f}$ curve at elevated temperatures.s.s.s.

Surface crack growth behaviors of 304 stainless steel at elevated temperatures (304 스테인리스 鋼의 高溫에서의 表面균열 成長特性에 관한 硏究)

  • 서창민;신형섭;권영태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.355-361
    • /
    • 1987
  • Creep and fatigue tests were carried out on crack growth properties of small surface cracks in 304 stainless steel at 538.deg.C, 593.deg. C and 650.deg. C in air, by using small plate specimens with a small artificial pit. All the data of the crack growth rate per hour obtained in the present tests were correlated with the maximum stress intensity factor, so that the applicability of linear fracture mechanics to the crack growth of surface cracks at elevated temperature was investigated. In the creep test, relatiion of .sigma.$\^$n/.t$\_$f/=C is obtained between failure time and nominal stress at each temperature level, where n has the value of 11-14 depending on the temperature level. In the creep and fatigue crack growth properties of surface cracks at the elevated temperatures, the maximum stress intensity factor, $_{4}$$\_$max/, is some extent applicable parameter to describe the surface crack growth rate under the present experimental conditions. The crack growth rate per hour increases when the holding time decreases, and creep crack growth rate per hour becomes the lowest limit of crack growth rate per hour in this tests.

Study on the Fatigue Crack Initiation Life uncle]r 3-Dimensional Rough Contact (3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구)

  • 김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 2002
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on the morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate clack initiation life in the substrate, dislocation pileup theory was used.