• Title/Summary/Keyword: Surface Charge Density

Search Result 293, Processing Time 0.03 seconds

The Effect of Lattice Topology on Benzyl Alcohol Adsorption on Kaolinite Surfaces: Quantum Chemical Calculations of Mulliken Charges and Magnetic Shielding Tensor (캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.313-325
    • /
    • 2007
  • In order to have better insights into adsorption of organic molecules on kaolinite surfaces, we performed quantum chemical calculations of interaction between three different model clusters of kaolinite siloxane surfaces and benzyl alcohol, with emphasis on the effect of size and lattice topology of the cluster on the variation of electron density and magnetic shielding tensor. Model cluster 1 is an ideal silicate tetrahedral surface that consists of 7 hexagonal rings, and model cluster 2 is composed of 7 ditrigonal siloxane rings with crystallographically distinct basal oxygen atoms in the cluster, and finally model cluster 3 has both tetrahedral and octahedral layers. The Mulliken charge analysis shows that siloxane surface of model cluster 3 undergoes the largest electron density transfer after the benzyl alcohol adsorption and that of model cluster 1 is apparently larger than that of model cluster 2. The difference of Mulliken charges of basal oxygen atoms before and after the adsorption is positively correlated with hydrogen bond strength. NMR chemical shielding tensor calculation of clusters without benryl alcohol shows that three different basal oxygen atoms (O3, O4, and O5) in model cluster 2 have the isotropic magnetic shielding tensor as $228.2{\pm}3.9,\;228.9{\pm}3.4,\;and\;222.3{\pm}3.0ppm$, respectively. After the adsorption, the difference of isotropic chemical shift varies from 1 to 5.5 ppm fer model cluster 1 and 2 while model cluster 2 apparently shows larger changes in isotropic chemical shift. The chemical shift of oxygen atoms is also positively correlated with electron density transfer. The current results show that the adsorption of benzyl alcohol on the kaolinite siloxane surfaces can largely be dominated by a weak hydrogen bonding and electrostatic force (charge-charge interaction) and demonstrate the importance of the cluster site and the lattice topology of surfaces on the adsorption behavior of the organic molecules on clay surfaces.

Surface Treatment of Multi-walled Carbon Nanotubes for Increasing Electric Double-layer Capacitance (다중벽 탄소나노튜브의 표면처리에 따른 전기이중층 커패시터의 특성)

  • Kim, Ji-Il;Kim, Ick-Jun;Park, Soo-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • In this work, the electrochemical properties of surface treated multi-walled carbon nanotubes (MWNTs) were studied. Nitrogen and oxygen functional groups of the MWNTs were introduced by urea and acidic treatment, respectively. The surface functional groups of the MWNTs were confirmed by X-ray photoelectron spectroscopy (XPS) measurements and zeta-potential method. The characteristics of $N_2$ adsorption isotherm at 77 K, specific surface area, and total pore volumes were investigated by BET eqaution, BJH method and t-plot method. Electrochemical properties of the functionalized MWNTs were accumulated by cyclic voltammetry at the scan rates of 50 $mVs^{-1}$ and 100 $mVs^{-1}$ in 1M $H_2SO_4$ as electrolytes. As a result, the functionalized MWNTs led to an increase of capacitance as compared with pristine MWNTs. It was found that the increase of capacitance for urea treated MWNTs was attributed to the increase in density of surface functional groups, resulting in improving the wettability between electrode materials and charge species.

Chemical Bonding and Surface Electronic Structures of Pt3Co (111), Pt3Ni (111) Single Crystals

  • Kim, Yong-Su;Jeon, Sang-Ho;Bostwick, Aaron;Rotenberg, Eli;Ross, Philip N.;Stamenkovic, Vojislav R.;Markovic, Nenad M.;Noh, Tae-Won;Han, Seung-Wu;Mun, Bong-Jin Simon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.139-139
    • /
    • 2012
  • With angle resolved photoemission spectroscopy (ARPES), the surface electronic band structures of Pt3Co (111) and Pt3Ni (111) single crystals are investigated, which allow to study the bonding interaction between chemically absorbed atomic oxygen and its surfaces. The d-band electrons of subsurface TM are separated from the direct chemical bonding with atomic oxygen. That is, the TM does not contribute to direct chemical bonding with oxygen. From the density functional theory (DFT) calculations, it is identified that the main origin of improved oxygen absorption property, i.e. softening of Pt-O bonding, is due to the suppression of Pt surface-states which is generated from change of interlayer potential, i.e. charge polarization, between Pt-top and TM-subsurface. Our results point out the critical roles of subsurface TM in modifying surface electronic structures, which in turn can be utilized to tune surface chemical properties.

  • PDF

Self Charging Sulfanilic Acid Azocromotrop/Reduced Graphene Oxide Decorated Nickel Oxide/Iron Oxide Solar Supercapacitor for Energy Storage Application

  • Saha, Sanjit;Jana, Milan;Samanta, Pranab;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.179-185
    • /
    • 2016
  • A self-charging supercapacitor is constructed through simple integration of the energy storage and photo exited materials at the photo electrode. The large band gap of $NiO/Fe_3O_4$ heterostructure generates photo electron at the photo electrode and store the charges through redox mechanism at the counter electrode. Sulfanilic acid azocromotrop/reduced graphene oxide layer at the photo electrode trapped the photo generated hole and store the charge by forming double layer. The solar supercapacitor device is charged within 400 s up to 0.5 V and exhibited a high specific capacitance of ~908 F/g against 1.5 A/g load. The solar illuminated supercapacitor shows a high energy and power density of 33.4 Wh/kg and 385 W/kg along with a very low relaxation time of ~15 ms ensuring the utility of the self charging device in the various field of energy storage and optoelectronic application.

The Effect of Silane and Dispersant on the Packing in the Composite of Epoxy and Soft Magnetic Metal Powder (실란 및 분산제가 Epoxy와 연자성 금속 파우더 복합체의 Packing에 미치는 영향)

  • Lee, Chang Hyun;Shin, Hyo Soon;Yeo, Dong Hun;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.751-756
    • /
    • 2017
  • A molding-type power inductor is an inductor that uses a hybrid material that is prepared by mixing a ferrite metal powder coated with an insulating layer and an epoxy resin, which is injected into a coil-embedded mold and heated and cured. The fabrication of molding-type inductors requires various techniques such as for coil formation and insertion, improving the magnetic properties of soft magnetic metal powder, coating an insulating film on the magnetic powder surface, and increasing the packing density by well dispersing the powder in the epoxy resin. Among these aspects, researches on additives that can disperse the metal soft magnetic powder having the greatest performance in the epoxy resin with high charge have not been reported yet. In this study, we investigated the effect of silanes, KBM-303 and KBM-403, and a commercial dispersant on the dispersion of metal soft magnetic powders in epoxy resin. The sedimentation height and viscosity were measured, and it was confirmed that the silane KBM-303 was suitable for dispersion. For this silane, the packing density was as high as about 72.49%. Moreover, when 1.2 wt% of dispersant BYK-103 was added, the packing density was about 80.5%.

Comparing the Passivation Quality of Ozone and H2O Oxidant of Atomic Layer Deposited Al2O3 by Post-annealing in N2 and Forming Gas Ambients for Passivated Emitter and Rear Cell (PERC)

  • Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.462-462
    • /
    • 2014
  • The effect of rear passivation for passivated emitter and rear cell (PERC) using ozone and H2O oxidant of atomic layer deposited (ALD) Al2O3 was studied by post-annealing in N2 and forming gas ambients. Rear surface of PERC solar cell was passivated by Al2O3 grown by ALD with ozone and H2O oxidant. Al2O3 grown by ALD with ozone oxidant has been known to have many advantages, such as lower interface defects, low leakage current density. Its passivation quality is better than Al2O3 with H2O. Al2O3 layer with 10 nm and 20 nm thickness was grown at $150^{\circ}C$ with ozone oxidant and at $250^{\circ}C$ with H2O oxidant. And then each samples were post-annealled at $450^{\circ}C$ in N2 ambients and at $850^{\circ}C$ in forming gas ambients. The passivation quality was investigated by measuring the minority carrier lifetime respectively. We examined atomic layer deposited Al2O3 such as growth rate, film density, thickness, negative fixed charge density at AlOx/Si interface, and reflectance. The influences of process temperature and heat treatment were investigated using Sinton (WCT-120) by Quasi-Steady State Photoconductance (QSSPC) mode. Ozone-based ALD Al2O3 film shows the best carrier lifetime at lower deposition temperature than H2O-based ALD.

  • PDF

Progress in Novel Oxides for Gate Dielectrics and Surface Passivation of GaN/AlGaN Heterostructure Field Effect Transistors

  • Abernathy, C.R.;Gila, B.P.;Onstine, A.H.;Pearton, S.J.;Kim, Ji-Hyun;Luo, B.;Mehandru, R.;Ren, F.;Gillespie, J.K.;Fitch, R.C.;Seweel, J.;Dettmer, R.;Via, G.D.;Crespo, A.;Jenkins, T.J.;Irokawa, Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Both MgO and $Sc_2O_3$ are shown to provide low interface state densities (in the $10^{11}{\;}eV^{-1}{\;}cm{\;}^{-2}$ range)on n-and p-GaN, making them useful for gate dielectrics for metal-oxide semiconductor(MOS) devices and also as surface passivation layers to mitigate current collapse in GaN/AlGaN high electron mobility transistors(HEMTs).Clear evidence of inversion has been demonstrated in gate-controlled MOS p-GaN diodes using both types of oxide. Charge pumping measurements on diodes undergoing a high temperature implant activation anneal show a total surface state density of $~3{\;}{\times}{\;}10^{12}{\;}cm^{-2}$. On HEMT structures, both oxides provide effective passivation of surface states and these devices show improved output power. The MgO/GaN structures are also found to be quite radiation-resistant, making them attractive for satellite and terrestrial communication systems requiring a high tolerance to high energy(40MeV) protons.

Abnormal Work Function Modification at the Interface between Organic Molecule and Solid Surfaces

  • Kim, Ji-Hoon;Seo, Jae-Won;Kang, Hye-Seung;Kim, Jeong-Kyu;Kim, Jeong-Won;Lee, Han-Gil;Kwon, Young-Kyung;Park, Yong-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.63-63
    • /
    • 2010
  • Using both experimental and theoretical approaches, we have investigated the adsorption properties of an organic molecule (HATCN), which is used in OLEDs as an efficient hole injection layer, on metal and inert surfaces. We have also studied the structural and electronic properties of such interfaces and the dependences on deposition thickness. We have observed different trends in work function changes with different surfaces. Our photoelectron spectroscopic measurements have revealed an abnormal phenomenon in HATCN on a metal (Cu) surface: the work function decreases at lower coverage (~monolayer) of HATCN on a metal (Cu) surface, but it increases back and becomes higher than that of a bare Cu surface at higher coverage. It has, on the contrary, been observed that the work function of graphene surface just increases as the HATCN coverage increases. Our first-principles density functional calculations has not only verified our experimental observations, but also disclosed the underlying mechanism of such abnormal and different work function behaviors. We have found that the change in work function results from mutual polarization induced by the geometrical deformation and the bond dipole formed at the interface due to the charge redistribution. At low coverage of HAT-CN on Cu substrate, the former reduces the work function significantly by pulling down the vacuum level, while the latter tends to push up the vacuum level resulting in the work function increase.

  • PDF

Relationship among Physical & Chemical Properties of Supports and Performance of Methane Fermentation in Anaerobic Fluidized-Bed Reactor (혐기성 유동층 반응기에서 지지체의 물리.화학적 특성과 메탄 발효 성능 사이의 관계)

  • 조무환;남영섭정재학김정목
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.431-437
    • /
    • 1993
  • Active carbon which has the smallest bulk and wet density was found as the best support media among 4 different kinds of materials(celite, natural zeolite, Pusuk stone, active carbon) to make a proper fluidized-bed with small energy consumption. Its minimum and optimum fluidization velocity were found as 0.03cm/sec and 0.25cm/sec, respectively. As organic loading rate for methane fermentation was increased, CODcr removal efficiencies of all the media were decreased. But, CODcr, removal efficiencies of active carbon was maintained more than 90% in this experimental range of the organic loading rate. Larger amount of microorganism was adsorbed on the active carbon which has very high specific surface area. At the organic loading rate of 16g CODcr,/l day, its adsorbed cell mass was 157mg/g. Comparing natural zeolite with roast celite, adsorbed cell mass did not increase in proportion to specific surface area of the media. Even though roast celite has the same specific surface area as the Pusuk stone, its organic removal ability was superior to that of the Pusuk stone, which explains that the relatively great surface roughness and the positive surface charge are important for cell adsorption. It was concluded that the support media for anaerobic fluidized reactor should have small wet density and small fuidization velocity, if possible, in order to increase cell adsorption by reducing the fluid shear stress.

  • PDF

Electrochemical Characteristics of EDLC with various Organic Electrolytes (유기전해질에 따른 EDLC의 전기화학적 특성)

  • Yang Chun-Mo;Lee J.K.;Cho W.I.;Cho B.W.;Rim Byung-O
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.113-117
    • /
    • 2001
  • Specific capacitance and charge-discharge rate of EDLC using activated carbon electrode were affected by the compositions of electrolytes, the conditions of charge-discharge and physical properties of activated carbon materials. The activated carbon electrode was prepared by dip coating method. Charge-discharge test and electrochemical experiments were carried out for various kinds of organic electrolytes. Effects of charge and discharge current density on the specific capacitance were studied. Characteristics of leakage current, self-discharge and time-voltage curves in optimum conditions of organic electrolytes were compared with conventional $1M-Et_4NBF_4/PC$ electrolyte. The EDLC using MSP-20(specific surface area: $2000m^2/g$) electrode and $1M-LiPF_6/PC-DEC(1:1)$ was exhibited th highest specific capacitance of 130F/g and low polarization resistances. The EDLC using MSP-20 electrode at $1M-LiPF_6/PC-DEC(1:1)$ was small leak current of 0.0004A for 15min, long voltage retention of 0.8V after 100h and linear time-voltage curves with small IR-drop.