• Title/Summary/Keyword: Surface Characterization

Search Result 2,085, Processing Time 0.023 seconds

Generation and Characterization of a Monoclonal Antibody with Specificity for Mycoplasma arginini

  • Son, Yeon-Sung;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Previously, we generated monoclonal antibodies (MAbs) that bound to the surface of human embryonic stem cells (hESCs) in an attempt to discover new hESC-specific surface markers. In this study, MAb 47-235 (IgG1, ${\kappa}$) was selected for further characterization. The MAb bound to the surface of undifferentiated hESCs but did not bind to mouse ESCs or mouse embryonic fibroblast cells in flow cytometric analysis. The antibody immunoprecipitated a 47 kDa protein from the lysates of cell surface-biotinylated hESCs. Identification of the protein by quadrupole time of flight tandem mass spectrometry revealed that 47-235 binds to Ag 243-5 protein of Mycoplasma arginini. BM-Cyclin treatment of the hESCs that reacted with 47-235 resulted in loss of mycoplasma DNA and the reactivity to 47-235. Nevertheless, the hESCs that were reactive to 47-235 maintained self-renewal and pluripotency and thus could be differentiated into three embryonic germ layers.

Surface Characterization of Low Temperature Plasma Treated Wool Fiber - The Effect of the Nature of Gas-

  • Kan, C.W.;Chan, K.;Yuen, C.W.M.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • Previous investigation results revealed that after the Low Temperature Plasma (LTP) treatment, the hydrophilicity of wool fiber was improved significantly. Such improvement enhances the wool dyeing and finishing processes which might be due to the changes of the wool surface to a more reactive one. In this paper, wool fibers were treated with LTP with different gases, namely, oxygen, nitrogen and gas mixture (25 % hydrogen/75 % nitrogen). Investigations showed that chemical composition of wool fiber surface varied differently with the different plasma gas used. The surface chemical composition of the different LTP-treated wool fibers was evaluated with different characterization methods, namely FTIR-ATR, XPS and saturated adsorption value. The experimental results were thoroughly discussed.

Characterization of Silk Fibroin/S-carboxymethyl Kerateine Surfaces: Evaluation of Biocompatibility by Contact Angle Measurements

  • Lee, Kuen-Yong
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.71-74
    • /
    • 2001
  • Surface characterization of materials has been considered critical in the development of biomaterials, as many unfavorable responses from the body occur at the interface between a material and the body component. The contact angle measurement is one means to characterize the surface properties and to correlate them to the biocompatibility of materials. In this paper, surface characteristics of silk fibroin/S-carboxymethyl kerateine, representative fibrous proteins, were investigated by contact angle measurements of ESCA. The biocompatibility of the blends was evaluated based on minimal interfacial free energy concept, and compared with other potential biomaterials. It was also hypothesized that the enhanced surface polarity of the blends was generated from the conformational transition of proteins. This approach to evaluate the biocompatibility of materials based on surface characteristics may find wide utility in many biomedical applications.

  • PDF

Characterization of Surface Roughness Using the Concept of Entropy in Machining (엔트로피 개념을 이용한 절삭가공에서 표면거칠기의 특성화)

  • 최기홍;최기상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3118-3126
    • /
    • 1994
  • This paper describes the use of the concept of (relative) entropy for effective characterization of the amplitude and the frequency distributions of the surface profile formed in machining operation. For this purpose, a theoretical model for surface texture formation in turning operation is developed first. Then, the concept of (relative) entropy is reviewed and its effectiveness is examined based on the simulation and experimental results. The results also suggest that under random tool vibration the effect of the geometrical factors on the surface texture formation can be successfully decomposed and therefore, identified by applying the concept of (relative) entropy.

Preparation and characterization of niobium carbide crystallites

  • Choi, Jeang-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.125-129
    • /
    • 2009
  • The preparation and characterization of niobium carbide crystallites were investigated in this study, and in particular, the effect of preparation conditions were studied on the synthesis of niobium carbides crystallites. For this purpose, various characterization techniques including x-ray diffraction, BET surface area, and oxygen uptake measurements were employed to characterize the synthesized niobium carbide crystallites. The niobium carbide crystallites were prepared using niobium oxide and methane gas or methane-hydrogen mixture. Using x-ray diffraction a lattice parameter of $4.45{\AA}$ and a crystallite size ranging from $52{\AA}$ to $580{\AA}$ was found. BET surface areas ranged from $3.2\;m^2/g$ to $16.6\;m^2/g$ and oxygen uptake values varied from $0.5{\mu}mol/g$ to $6.1{\mu}mol/g$. It was observed that niobium carbide crystallites were active for ammonia decomposition reaction. While the BET surface area increased with increasing the oxygen uptake, the conversion of ammonia decomposition reaction decreased. These results indicated that the ammonia decomposition over these materials was considered to be structure-sensitive.

Characterization of Base Paper Properties on Coating Penetration

  • Kim, Bong-Yang;Douglas W. Bousfield
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.17-25
    • /
    • 2003
  • The influence of base paper properties and fiber type on coating penetration was studied in terms of characterization of coating holdout using two types of hand sheets as the base paper which were prepared from thermomechanical pulp (TMP) and hardwood bleached kraft pulp(KP) sized internally with alkyl ketene dimmer (AKD). Laboratory rod draw down coater was used for surface sizing and coating application. Characterization of coating penetration was done by measuring the roughness of the backside of coating layer. The backside of the coating was exposed by dissolving the fibers in a solution of cupriethylenedimine (CEO). Data show that internal sizing of base paper is effective and surface sizing is more effective to prevent coating penetration. Comparing between the two types of base papers, backside roughness of coating layer of TMP sheet is much larger and sizing is more effective to reduce coating penetration than those of KP sheet. From the result of water absorption and sizing degree after surface sizing, it seems that internal sizing slows down molecular diffusion much more than capillary penetration, but surface sizing reduces the capillary penetration. Furthermore, predominant mechanism of water into paper of TMP sheet seems to be capillary penetration, but it is molecular diffusion in the case of KP sheet.

Comparison of surface characterization according to surface treatment of composite resin inlay (복합레진 인레이의 표면처리방법에 따른 표면특성 비교)

  • Lee, Myung-Jin;Choi, Yu-Ri;Kang, Min-Kyung
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.307-315
    • /
    • 2019
  • Objectives: The aim of this study was to investigate the characterization of composite resin inlay surface with silane and non-thermal atmospheric pressure plasma treatment. Methods: Composite resin inlay was used as a specimen, which was treated by sandblasting + silane and sandblasting + plasma. The untreated specimens were assigned to the control group. Specimens were analyzed for surface roughness, color change, and chemical composition. Statistical analyses were performed using one-way ANOVA test (p<0.05). Results: The present findings showed that the roughness and color changes of the plasma-treated surface were significantly lower than those of the silane-treated surface. In addition, a change in the chemical composition was observed on the plasma-treated surface. Conclusions: Based on the results, non-thermal atmospheric pressure plasma could be a potential tool for the cementation of composite resin inlay.

On the effects of the characteristics of the titanium oxide to the osteoblast cell culture

  • Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.358-359
    • /
    • 2000
  • Statement of problem. Confusion about the relationship of surface characteristics of implant to osteoblast cell attachment. Purpose. This study attempted to bone cell attachment to the implant surface which was modified by heat. Material and methods. Commercially pure titanium grade 2, $4{\times}4mm$ sheet 40 pieces were treated for 10 minutes with ultrasonic cleaner with methylethyl ketone, ethanol, deionized distilled water, and half of the specimen 20 pieces were heat treated in $980^{\circ}C$ for 15 minutes. All 40 specimens were autoclaves. Total 6 dishes were prepared, 3 dishes were for control group, and the other 3 dishes were for heat treatment. In fourth day, cell account was done. Conculsion. The change of surface characterization by heat treatment could affect the cell attachment in the early stage however, the change of surface characterization would not be prolonged.

  • PDF

The Effect of Surface Characterization Parameters on Sliding Friction (표면거칠기의 변화에 따른 미끄럼 마찰 특성)

  • Kim, Tae-Wan;Lee, Sang-Don;Cho, Yong-Joo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.18-24
    • /
    • 2004
  • The effect of surface characterization parameters, such as surface roughness, skewness and kurtosis, on sliding friction and wear was studied experimentally. The friction coefficient was examined under the various parameters and sliding speed, normal load and type of lubricant with ball-on-disk type tribo-meter. The surface of the lower skewness in negative or the higher kurtosis between the same arithmetic mean value tends to indicate low friction.

  • PDF