• Title/Summary/Keyword: Surface Atmosphere

Search Result 1,557, Processing Time 0.036 seconds

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

Catalyst Carriers Preparation and Investigation of Catalytic Activities for Partial Oxidation of Methane to Hydrogen over Ru Impregnated on SPK and SPM Catalysts (메탄의 부분산화반응으로부터 수소제조를 위한 촉매담체(SPK, SPM) 제조 및 Ru 담지 촉매의 활성도 조사)

  • Seo, Ho Joon;Fan, Shijian;Kim, Yong Sung;Jung, Do Sung;Kang, Ung Il;Cho, Yeong Bok;Kim, Sang Chai;Kwon, Oh-Yun;Sunwoo, Chang Shin;Yu, Eui Yeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.581-584
    • /
    • 2008
  • The catalyst carriers of the mesoporous layer compounds were prepared to carry out the partial oxidation of methane(POM) to hydrogen. The catalytic activities of POM to hydrogen were investigated over Ru(3)/SPK and Ru(3)/SPM catalyst in a fixed bed flow reactor under atmosphere. In addition, the catalysts and carriers were characterized by BET, TEM, TPR. The BET surface areas of the silica-pillared $H^+-kenyaite$(SPK) and the silica-pillared $H^+-magadite$(SPM) were $760m^2/g$ and $810m^2/g$, repectively, and the average pore sizes were 3.0 nm and 2.6 nm, repectively. The nitrogen adsorption isotherms were type IV with developed hysteresis. The TEM showed that the mesoporous layer compounds were formed well. The Ru(3)/SPK and the Ru(3)/SPM catalyst were obtained high hydrogen yields(90%, 87%), and were kept constant high hydrogen yields even about 60 hours at 973 K, $CH_4/O_2=2$, $1.25{\times}10^{-5}g-Cat.hr/ml$. The TPR peaks of Ru(3)/SPK and the Ru(3)/SPM catalyst showed the similar reducibilities around 453 K and 413 K. It could be suggested that SPK and SPM had the physicochemical properties as oxidation catalyst carries from these analysis data.

Effect of Volatile Matter and Oxygen Concentration on Tar and Soot Yield Depending on Coal Type in a Laminar Flow Reactor (LFR에서 탄종에 따른 휘발분과 산소농도가 타르와 수트의 발생률에 미치는 영향)

  • Jeong, Tae Yong;Kim, Yong Gyun;Kim, Jin Ho;Lee, Byoung Hwa;Song, Ju Hun;Jeon, Chung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1034-1042
    • /
    • 2012
  • This study was performed by using an LFR (laminar flow reactor), which can be used to carry out different types of research on coal. In this study, an LFR was used to analyze coal flames, tar and soot yields, and structures of chars for two coals depending on their volatile content. The results show that the volatile content and oxygen concentration have a significant effect on the length and width of the soot cloud and that the length and width of the cloud under combustion conditions are less than those under a pyrolysis atmosphere. At sampling heights until 50 mm, the tar and soot yields of Berau (sub-bituminous) coal, which contains a large amount of volatile matter, are less than those of Glencore A.P. (bituminous) coal because tar is oxidized by the intrinsic oxygen component of coal and by radicals such as OH-. On the other hand, at sampling heights above 50 mm, the tar and soot yields of Berau coal are higher than those of Glencore A.P. coal by reacted residual volatile matter, tar and light gas in char and flame. With above results, it is confirmed that the volatile matter content and the intrinsic oxygen component in a coal are significant parameters for length and width of the soot cloud and yields of the soot. In addition, the B.E.T. results and the images of samples (SEM) obtained from the particle separation system of the sampling probe support the above results pertaining to the yields; the results also confirm the pore development on the char surface caused by devolatilization.

Effect of Heating by Nano-Carbon Fiber Infrared Lamps on Growth and Vase Life of Cut Roses and Heating Cost (나노탄소섬유 적외선등 난방이 절화장미의 생육과 수명 및 난방비에 미치는 영향)

  • Lim, Mi-Young;Ko, Chung-Ho;Son, Moon-Sook;Lee, Sang-Bok;Kim, Gil-Ju;Kim, Byung-Soo;Kim, Young-Bok;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The greatest and major cost for cut rose production during winter seasons in Korea is cost of heating the greenhouse. A study was conducted on a cost-efficient heating system to reduce expenses of cut rose growers in times of high energy prices. An infrared heating system utilizing radiant energy has an obvious advantage over other heating methods in that the energy is first used to raise temperatures of plants and other objects and subsequently that of the atmosphere, resulting in faster reaching to desired plant temperatures at a reduced heating cost. In this study the heating effect and heating cost saving of a nano-carbon fiber infrared heating system (NCFIHS) installed in cut rose greenhouses in Gimhae, Gyeongnam Province were analyzed comparatively. In addition growth, quality, and vase life of 'Orange Fresh' roses grown in greenhouses heated by NCFIHS against those grown in greenhouses heated by so called an electrical heating system. In greenhouses with a NCFlHS with a set point air temperature of $20^{\circ}C$, plant temperature was maintained at $1{\sim}2^{\circ}C$ higher than the air temperature, and temperatures of growing bed surface and root zone were maintained at $17{\sim}19^{\circ}C$ throughout cold winter nights. The cost for heating in NCFIHS was about 25 and 51% of that of an electrical heating system and a hot water heating system heated by petroleum, respectively. Growth of roses harvested in greenhouses with a NCFIHS was similar to those grown in greenhouses with an electrical heating system. However, cut roses with more intense petal and leaf colors and a longer vase life (fresh weight and amount of water uptake) were harvested in greenhouses with a NCFIHS as compared to those harvested in greenhouses with an electrical heating system.

Carbon nanotube field emission display

  • Chil, Won-Bong;Kim, Jong-Min
    • Electrical & Electronic Materials
    • /
    • v.12 no.7
    • /
    • pp.7-11
    • /
    • 1999
  • Fully sealed field emission display in size of 4.5 inch has been fabricated using single-wall carbon nanotubes-organic vehicle com-posite. The fabricated display were fully scalable at low temperature below 415$^{\circ}C$ and CNTs were vertically aligned using paste squeeze and surface rubbing techniques. The turn-on fields of 1V/${\mu}{\textrm}{m}$ and field emis-sion current of 1.5mA at 3V/${\mu}{\textrm}{m}$ (J=90${\mu}{\textrm}{m}$/$\textrm{cm}^2$)were observed. Brightness of 1800cd/$m^2$ at 3.7V/${\mu}{\textrm}{m}$ was observed on the entire area of 4.5-inch panel from the green phosphor-ITO glass. The fluctuation of the current was found to be about 7% over a 4.5-inch cath-ode area. This reliable result enables us to produce large area full-color flat panel dis-play in the near future. Carbon nanotubes (CNTs) have attracted much attention because of their unique elec-trical properties and their potential applica-tions [1, 2]. Large aspect ratio of CNTs together with high chemical stability. ther-mal conductivity, and high mechanical strength are advantageous for applications to the field emitter [3]. Several results have been reported on the field emissions from multi-walled nanotubes (MWNTs) and single-walled nanotubes (SWNTs) grown from arc discharge [4, 5]. De Heer et al. have reported the field emission from nan-otubes aligned by the suspension-filtering method. This approach is too difficult to be fully adopted in integration process. Recently, there have been efforts to make applications to field emission devices using nanotubes. Saito et al. demonstrated a car-bon nanotube-based lamp, which was oper-ated at high voltage (10KV) [8]. Aproto-type diode structure was tested by the size of 100mm $\times$ 10mm in vacuum chamber [9]. the difficulties arise from the arrangement of vertically aligned nanotubes after the growth. Recently vertically aligned carbon nanotubes have been synthesized using plasma-enhanced chemical vapor deposition(CVD) [6, 7]. Yet, control of a large area synthesis is still not easily accessible with such approaches. Here we report integra-tion processes of fully sealed 4.5-inch CNT-field emission displays (FEDs). Low turn-on voltage with high brightness, and stabili-ty clearly demonstrate the potential applica-bility of carbon nanotubes to full color dis-plays in near future. For flat panel display in a large area, car-bon nanotubes-based field emitters were fabricated by using nanotubes-organic vehi-cles. The purified SWNTs, which were syn-thesized by dc arc discharge, were dispersed in iso propyl alcohol, and then mixed with on organic binder. The paste of well-dis-persed carbon nanotubes was squeezed onto the metal-patterned sodalime glass throuhg the metal mesh of 20${\mu}{\textrm}{m}$ in size and subse-quently heat-treated in order to remove the organic binder. The insulating spacers in thickness of 200${\mu}{\textrm}{m}$ are inserted between the lower and upper glasses. The Y\ulcornerO\ulcornerS:Eu, ZnS:Cu, Al, and ZnS:Ag, Cl, phosphors are electrically deposited on the upper glass for red, green, and blue colors, respectively. The typical sizes of each phosphor are 2~3 micron. The assembled structure was sealed in an atmosphere of highly purified Ar gas by means of a glass frit. The display plate was evacuated down to the pressure level of 1$\times$10\ulcorner Torr. Three non-evaporable getters of Ti-Zr-V-Fe were activated during the final heat-exhausting procedure. Finally, the active area of 4.5-inch panel with fully sealed carbon nanotubes was pro-duced. Emission currents were character-ized by the DC-mode and pulse-modulating mode at the voltage up to 800 volts. The brightness of field emission was measured by the Luminance calorimeter (BM-7, Topcon).

  • PDF

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF

Impact of IODM and ENSO on the East Asian Monsoon: Simulations through NCAR Community Atmospheric Model (동아시아 몬순 지역에서 IODM과 ENSO의 영향 : NCAR Community Atmospheric Model을 이용한 모의 실험)

  • Oh J.-H.;Chaudhari H. S.;Kripalani R. H.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.240-249
    • /
    • 2005
  • The normal Indian Ocean is characterized by warmer waters over the eastern region and cooler waters over the western region. Changes in sea surface temperature (SST) over the western and eastern Indian Ocean give birth to a phenomenon now referred to as the Indian Ocean Dipole Mode (IODM). The positive phase of this mode is characterized by positive SST anomalies over the western Indian Ocean and negative anomalies over the southeastern Indian Ocean, while the negative phase is characterized by a reversed SST anomaly pattern. On the other hand, the normal Pacific Ocean has warm (cool) waters over the western (eastern) parts. Positive (negative) SST anomalies over the central/eastern (western) Pacific Ocean characterize the E1 Nino phenomenon. The reverse situation leads to the La Nina phenomenon. The coupled ocean-atmosphere phenomenon over the Pacific is referred to as the E1 Nino Southern Oscillation (ENSO) phenomenon. In this study the impact of IODM and ENSO on the East Asian monsoon variability has been studied using observational data and using the Community Atmospheric Model (CAM) of the National Center for Atmospheric Research (NCAR). Five sets of model experiments were performed with anomalous SST patterns associated with IODM/ENSO superimposed on the climatological SSTs. The empirical and dynamic approaches reveal that it takes about 3-4 seasons fur the peak IODM mode to influence the summer monsoon activity over East Asia. On the other hand, the impact of ENSO on the East Asian monsoon could occur simultaneously. Further, the negative (positive) phase of IODM and E1 Nino (La Nina) over the Pacific enhances (suppresses) monsoon activity over the Korea-Japan Sector. Alternatively, IODM appears to have no significant impact on monsoon variability over China. However, El Nino (La Nina) suppresses (enhances) monsoon activity over China. While the IODM appears to influence the North Pacific subtropical high, ENSO appears to influence the Aleutian low over the northwest Pacific. Thus, the moisture supply towards East Asia from the Pacific is determined by the strengthening/weakening of the subtropical high and the Aleutian low.

Investigation on Characteristics of Summertime Extreme Temperature Events Occurred in South Korea Using Self-Organizing Map (자기조직화지도(Self-Organizing Map)를 이용한 최근 우리나라 여름철 극한온도 특성 분류)

  • Lim, Won-Il;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.305-315
    • /
    • 2018
  • This study investigates the characteristic spatial patterns and dynamic processes associated with the summertime extreme temperature events in South Korea during the last 20 years (1995~2014) using Self-Organizing Map (SOM). The classified SOM patterns commonly have high temperature and anticyclonic circulation anomalies over South Korea. The two major teleconnection patterns are identified: one is from the subtropical western North Pacific (WNP) affecting to the north and the other is from the North Atlantic (NA) affecting downstream region. The meridional teleconnection pattern is related to the forcing of positive sea surface temperature (SST) anomaly over the WNP. The northward propagating Rossby wave generates the East Asia-Pacific (EAP) pattern to form an anticyclonic circulation anomaly over South Korea. On the other hand, NA SST anomalies generate an eastward Rossby wave train across the Eurasian continent, leading to the development of an anticyclonic circulation anomaly over South Korea. The EAP pattern occurs more frequently in July and August, whereas the midlatitude teleconnection pattern associated with NA SST anomalies develops more frequently in early summer (June).

Effect of different days of postharvest treatment and CO2 concentrations on the quality of 'Seolhyang' strawberry during storage (수확 후 CO2 처리 시기 및 농도에 따른 '설향' 딸기 저장 중 품질변화)

  • Kim, Ji-Gang;Choi, Ji-Woen;Park, Me-Hea
    • Food Science and Preservation
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • This study was conducted to determine $CO_2$ treatment condition to extend the shelf-life of 'Seolhyang' strawberry. Fresh strawberries with red color on 80% of the fruit surface were harvested. The samples at two different stages (on the $1^{st}$ and $3^{rd}$ day after harvest) were placed in a gas-tight chamber with 0, 5, 15, or 30% $CO_2$ concentration for 3 hours at $4^{\circ}C$. Then, the strawberry samples were immediately packaged in a PET tray and stored at $4^{\circ}C$. The carbon dioxide treatment was effective in maintaining the quality of 'Seolhyang' strawberries treated on the $1^{st}$ day after harvest. These samples had higher firmness, lower redness, softening index, and decay rate compared to samples treated on the $3^{rd}$ day after harvest. Treatment with both 15 and 30% of $CO_2$ concentration on the $1^{st}$ day after harvest induced an increase of firmness of 'Seolhyang' strawberry after the treatment. Samples treated with 15 and 30% $CO_2$ the $1^{st}$ day after harvest maintained quality for 10 days. However, samples treated with $CO_2$ on the $3^{rd}$ day after harvest lost marketability at 10 days of storage. At the atmosphere containing 30% $CO_2$ on the $1^{st}$ day after harvest was most effective in reducing decay rate and fruit softening, and maintaining bright red color of strawberries among different $CO_2$ concentrations. Therefore, a 30% $CO_2$ treatment within one day after harvest can be a practical postharvest technology to extend shelf-life of 'Seolhyang' strawberry.

A Study of Long-term Trends of SST in the Korean Seas by Reconstructing Historical Oceanic Data (과거 해양자료 복원을 통한 한반도 주변해역 표층수온의 장기변동 연구)

  • Park, Myung-Hee;Song, Ji-Young;Han, In-Seong;Lee, Joon-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.881-897
    • /
    • 2019
  • We reconstructed and digitized the National Institute of Fisheries Science (NIFS) Serial Oceanographic observations (NSO) and Coastal Oceanographic observations (NCO) data attained prior to 1961 through historical oceanographic observation data rescue projects. Increasing trends of long-term sea surface temperature (SST) were shown from the NSO data of 21 available stations for the past 80 to 92 years. In general agreement with previous research results used in the data of the past 50 years, we calculated the rate of temperature rise. As a result of analyzing the spatial distribution of SST change rate in the Korean of shore region using selected oceanographic data, the West Sea and South Sea showed a higher tendency of temperature rise in the offshore area than in the coastal area. However, unlike the results of previous studies, the East Sea (Gangwon Line and Ulsan Line) showed a lower water temperature rise than the coastal stations. Annual fluctuations of NCO's SST data from 1989 to 1998 for three stations representing the East Sea, South Sea, and West Sea, (Jumunjin, Geomundo and Budo, respectively) revealed that the East Sea showed the highest SST increase for the 10 years. The increases were 1.63 ℃ at Jumunjin, 1.16 ℃ at Geomundo, and 0.79 ℃ at Budo. As a result of the investigation, it can be concluded that SST is repeatedly rising and falling with a period of 3 ~ 6 years. Especially, since the 1980s, most of the stations show positive anomalies of SST. Lastly, to understand ocean_atmosphere interactions, we analyzed the correlations between SST of the NCO stations and air temperature around them and the results were 0.76 for the South Sea (Geomundo), 0.34 for the West Sea (Budo), and 0.32 for the East Sea (Jumunjin) with the highest correlation in the South Sea.