• Title/Summary/Keyword: Surface Area of Plasma

Search Result 258, Processing Time 0.031 seconds

Air Fluid Analysis between Porous PE-Plate and Glass in Air-Floating FPD Conveyor System (공기부상 FPD 이송장치에서 다공질판과 글래스 사이의 공기유동 해석)

  • Lho, Tae-Jung;Shon, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.878-885
    • /
    • 2008
  • The FPDs(Flat Panel Displays) such as LCD(Liquid Crystal Display) and PDP(Plasma Display Panel) and OLED(Organic Light Emitting Diode), recently, have been substituted for CRT(Cathode Ray Tube) displays because they have a convex surface, small volume, light weight and lower electric power consumption. The productivity of FPDs is greatly dependent on the area of thin glass panel with 0.6 - 0.8mm thickness because FPDs are manufactured by cutting a large-scaled thin glass panel with patterns to the required product dimensions. So FPD's industries are trying to increase the area of thin glass panel. For example, the thin glass panel size of the 8th generation is 2,200mm in width, 2,600mm in length and 0.7mm in thickness. The air flows both in the thin glass panel and in the porous PE-plate surface were modeled and analyzed, from which a working condition was estimated. The thin glass panel on the porous PE-plate surface with self-lubricating characteristics was investigated and compared with that on the square duct floating bar surface with many holes of 1mm diameter when the thin glass panel contacts the floating bar surface due to malfunction of electric power supply.

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • Jang, Ho-Won;Mun, Hui-Gyu;Kim, Do-Hong;Sim, Yeong-Seok;Yun, Seok-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

A Study on the Regeneration Effects of Commercial $V_2O_5-WO_3/TiO_2$ SCR Catalyst for the Reduction of NOx (질소산화물 제거용 상용 $V_2O_5-WO_3/TiO_2$ SCR 폐 촉매의 재생 효과 고찰)

  • Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.859-869
    • /
    • 2005
  • The commercial $V_2O_5-WO_3/TiO_2$ catalysts which had been exposed to the off gas from incinerator for a long time were regenerated by physical and chemical treatment. The catalytic properties and NOx conversion reactivity of those catalysts were examined by analysis equipment and NOx conversion experiment. The characterization of the catalysts were performed by XRD(x-ray diffractometer), BET, POROSIMETER, EDX(energy dispersive x-ray spectrometer), ICP(inductively coupled plasma), TGA(thermogravimetric analyzer) and SEM (scanning electron microscopy). NOx conversion experiment were performed with simulated off gas of the incinerator and $NH_3$ was used as a reductant of SCR reaction. Among the regeneration treatment methods which were applied to regenerate the aged catalysts in this study, it showed that the heat treatment method had excellent regeneration effect on the catalytic performance for NOx conversion. The catalytic performance of the regenerated catalysts with heat treatment method were recovered over than 95% of that of fresh catalyst. For the regenerated catalysts with the acid solution(pH 5) and the alkali solution(pH 12), the catalytic performance were recovered over than 90% of that of fresh catalyst. From the characterization results of the regenerated catalysts, the specific surface area was recovered in the range of $85{\sim}95%$ of that of fresh catalyst. S and Ca element, which are well known as the deactivation materials for the SCR catalysts, accumulated on the aged catalyst surface were removed up to maximum 99%. Among the P, Cr, Zn and Pb elements accumulated on the aged catalyst surface, P, Cr and Zn element were removed up to 95%. But the Pb element were removed in the range of $10{\sim}30%$ of that of fresh catalyst.

A Study on the In situ Regeneration Effects of Commercial Deactivated SCR Catalyst (상용 탈질 SCR 폐촉매의 현장 재생 효과 고찰)

  • Park, Hea-Kyung;Jun, Min-Kee;Kim, Moon-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.664-670
    • /
    • 2012
  • A study on the in situ regeneration effect of commercial deactivated SCR catalyst which had been exposed to the off gas from the heavy oil fired power plant for a long time was carried out in a simulated in situ conditions by washing with distilled water and various acid solutions in a short time. The catalytic performance test of the regenerated SCR catalysts was carried out in the micro reactor with simulated off gas of the heavy oil fired power plant and all prepared catalysts were characterized by BET, Porosimeter, EDX (Energy Dispersive X-ray spectrometer) and ICP (Inductively Coupled Plasma) to investigate correlations between catalytic activity and surface characteristics of them. The characterization results of the regenerated catalysts showed that the specific surface area was restored 95% more than that of fresh catalyst. Under this study, the activity of the regenerated catalysts with acid solution (3~6 M) without using ultrasonic wave in a simulated in situ conditions was restored 90% more than that of the fresh catalyst. It was found that improved activity of regenerated catalyst was caused by removing the deactivating materials from the surface of the deactivated SCR catalyst through acid washing.

Hot Corrosion Behavior of Plasma Sprayed 4 mol% Y2O3-ZrO2 Thermal Barrier Coatings with Volcanic Ash (플라즈마 용사법으로 제작된 4mol% Y2O3-ZrO2 열차폐코팅의 화산재에 의한 고온열화거동)

  • Lee, Won-Jun;Jang, Byung-Koog;Lim, Dae-Soon;Oh, Yoon-Suk;Kim, Seong-Won;Kim, Hyung-Tae;Araki, Hiroshi;Murakami, Hideyuki;Kuroda, Seiji
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.353-358
    • /
    • 2013
  • The hot corrosion behavior of plasma sprayed 4 mol% $Y_2O_3-ZrO_2$ (YSZ) thermal barrier coatings (TBCs) with volcanic ash is investigated. Volcanic ash that deposited on the TBCs in gas-turbine engines can attack the surface of TBCs itself as a form of corrosive melt. YSZ coating specimens with a thickness of 430-440 ${\mu}m$ are prepared using a plasma spray method. These specimens are subjected to hot corrosion environment at $1200^{\circ}C$ with five different duration time, from 10 mins to 100 h in the presence of corrosive melt from volcanic ash. The microstructure, composition, and phase analysis are performed using Field emission scanning electron microscopy, including Energy dispersive spectroscopy and X-ray diffraction. After the heat treatment, hematite ($Fe_2O_3-TiO_2$) and monoclinic YSZ phases are found in TBCs. Furthermore the interface area between the molten volcanic ash layers and YSZ coatings becomes porous with increases in the heat treatment time as the YSZ coatings dissolved into molten volcanic ash. The maximum thickness of this a porous reaction zone is 25 ${\mu}m$ after 100 h of heat treatment.

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

The Fabrication of Thermal Sprayed Photocatalytic $TiO_{2}$ Coating on Bio-degradable Plastic

  • Bang, Hee-Seon;Bang, Han-sur
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.387-392
    • /
    • 2005
  • For the production of further functional bio-degradable plastic(polybutylene succinate:PBS) with $TiO_{2}$ as photocatalyst, which shows the decomposition of detrimental organic compound and pollutant under ultraviolet irradiation, we attempted to prepare $TiO_{2}$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated through the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photo catalytic performance and mechanical characteristics of the coatings have been investigated. The results indicated that with respect to both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio off 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_{7}$ coating exhibited largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to the much higher susceptibility to heat of 7nm agglomerated powder. In terms of photocatalytic efficiency, HVOF sprayed $P_{200}$ and $P_{30}$ coatings seem to predominate as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_{7}$ coatings didn't show the photo catalytic activity, which may result from the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Such functional PBS with new roles is expected to cosiderably contribute to the reduction of aggravated environmel problem.

  • PDF

The Development of Functional Photocatalytic $TiO_2$-Biodegrdable Plastic Composite Material by HVOF Spraying (고속가스플래임 용사법을 이용한 광촉매 $TiO_2$-생분해성 플라스틱 복합재료의 개발)

  • Bang, Hee-Seon;Bang, Han-Sur;Ohmori, Akira
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.57-61
    • /
    • 2006
  • For the production of functional $TiO_2$-biodegradable plastic (polybutylene succinate:PBS) composite material with photocayalytic activity, we attempted to prepare $TiO_2$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated by the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photocatalytic performance of the coatings have been investigated. The results indicated that for both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio of 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_7$ coating exhibited a largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to much higher susceptibility of heat for 7 nm agglomerated powder. HVOF sprayed $P_{200}$ and $P_{30}$ coatings show better performance as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_7$ coatings did not show the photocatalytic activity, which may result from the extremely small reaction surface area to the photocatalytic activity and low anatase ratio.

STUDY ON THE IMPROVEMENT OF LIGHT TRAPPING IN THE SILICON-BASED THIN-FILM SOLAR CELLS (실리콘 박막 태양전지에서 광 포획(light trapping) 개선에 관한 연구)

  • Jeon Sang Won;Lee Jeong Chul;Ahn Sae Jin;Yun Jae Ho;Kim Seok Ki;Park Byung Ok;Song Jinsoo;Yoon Kyung Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.192-195
    • /
    • 2005
  • The silicon thin film solar cells were fabricated by 13.56 MHz PECVD (Plasma-Enhanced Chemical-Vapor Deposition) and 60 MHz VHF PECVD (Very High-Frequency Plasma-Enhanced Chemical-Vapor Deposition). We focus on textured ZnO:Al films prepared by RF sputtering and post deposition wet chemical etching and studied the surface morphology and optical properties. These films were optimized the light scattering properties of the textured ZnO:Al after wet chemical etching. Finally, the textured ZnO:Al films were successfully applied as substrates for silicon thin films solar cells. The efficiency of tandem solar cells with $0.25 cm^2$ area was $11.8\%$ under $100mW/cm^2$ light intensity. The electrical properties of tandem solar cells were measured with solar simulator (AM 1.5, $100 mW/cm^2)$ and spectral response measurements.

  • PDF