• 제목/요약/키워드: Surface Alloying

검색결과 231건 처리시간 0.032초

구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 I-Cu, Mn (Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron I-Cu, Mn)

  • 방웅호;강춘식;박재현;권영각
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.230-239
    • /
    • 2000
  • High pressure wear characteristics of DCI(Ductile Cast Iron) were investigated through unlubricated pin-on-disc wear test. Wear test were carried out at speed of 23m/min, under pressure of 3MPa and 3.3 MPa. Cu and/or Mn were added to examine the effect of alloying elements on the high pressure wear characteristics of DCI. To investigate the relationship between wear characteristics and mechanical properties of DCI, Brinell hardness and V-notched Charpy impact energy were tested. Wear surface of each specimen was observed by SEM to determine the wear mechanism of DCI under high pressure wear condition. In the mild wear region, wear characteristics of alloyed DCI specimens were very similar to that of unalloyed DCI. But mild-severe wear transition was occurred at different wear distance and wear rate of DCI specimens were changed by alloying elements. In severe wear condition, wear rate of DCI was dramatically increased by the addition of Mn. Although the addition of Cu 0.46wt% did not decrease the wear rate of DCI in the severe wear region, but it delayed the mild-severe wear transition. Under high pressure wear condition, wear rate and mild-severe wear transition were not concerned with hardness of DCI specimens, but they were deeply associated with impact energy changed by alloying elements.

  • PDF

금 합금 도금층의 접촉저항에 미치는 합금원소의 영향 (Effect of alloying elements on the contact resistance of electrodeposited gold films)

  • 이지웅;손인준
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.184-184
    • /
    • 2013
  • 본 연구에서는 금 합금 도금층의 접촉저항에 미치는 첨가 합금원소의 영향을 조사하였다. 또한 표면실장을 위한 솔더링 공정에서 도금층에 가해지는 열이력이 접촉저항 값에 미치는 영향을 조사하기 위해서, $260^{\circ}C$에서 thermal aging을 실시한 후, 접촉저항을 측정하였다. 합금원소의 종류에 따라서 thermal aging후의 접촉저항 값이 변하는 요인을 조사하기 위해서 XPS를 이용하여 표면분석을 실시하였다.

  • PDF

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • 제15권3호
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

Fe와 galvanic couple된 알루미늄의 내식성에 미치는 마그네슘의 영향 (Effects of Mg on corrosion resistance of Al galvanically coupled to Fe)

  • 현영민;김희산
    • Corrosion Science and Technology
    • /
    • 제12권1호
    • /
    • pp.40-49
    • /
    • 2013
  • Effects of magnesium and pH on corrosion of aluminum galvanically coupled to iron have studied by using potentio- dynamic and static tests for polarization curves, Mott-Schottky test for analysis of semiconductor property, and GD-AES and XPS for film analysis. Pitting potential was sensitive to magnesium as an alloying element but not to pH, while passive current was sensitive to pH but not to magnesium. It was explained with, instead of point defect model (PDM), surface charge model describing that the ingression of chloride depends on the state of surface charge and passive film at film/solution interface is affected by pH. In addition, galvanic current of aluminum electrically coupled to iron was not affected by magnesium in pH 8.4, 0.2M citrate solution but was increased by magnesium at the solution of pH 9.1. The galvanic current at pH 9.1 increased with time at the initial stage and after the exposure of about 200 minute, decreased and stabilized. The behavior of the galvanic current was related with the concentration of magnesium at the surface. It agreed with the depletion of magnesium at the oxide surface by using glow discharge atomic emission spectroscopy (GD-AES). In addition, pitting potential of pure aluminum was reduced in neutral pH solution where chloride ion maybe are competitively adsorbed on pure aluminum. It was confirmed by the exponential decrease of pitting potential with log of [$Cl^-$] around 0.025 M of [$Cl^-$] and linear decrease of the pitting potential. From the above results, unlike magnesium, alloying elements with higher electron negativity, lowering isoelectric point (ISE), are recommended to be added to improve pitting corrosion resistance of aluminum and its alloys in neutral solutions as well as their galvanic corrosion resistance in weakly basic solutions.

Design of Advanced Weathering Steel with High Corrosion Resistance for Structural Applications

  • Choi, B.K.;Jung, H.G.;Yoo, J.Y.;Kim, K.Y.
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.121-129
    • /
    • 2005
  • Basic design concept of the future steel structure requires environmental compatibility and maintenance free capability to minimize economic burdens. Recent trends in alloy design for advanced weathering steel include addition of various alloying elements which can enhance formation of stable and protective rust layer even in polluted urban and/or high $Cl^{-}$ environment. The effects of Ca, Ni, W, and Mo addition on the corrosion property of Ca-modified weathering steel were evaluated through a series of electrochemical tests (pH measurement and electrochemical impedance spectroscopy: EIS) and structural analysis on rust layer formed on the steel surface. Ca-containing inclusions of Ca-Al-Mn-O-S compound are formed if the amount of Ca addition is over 25 ppm. Steels with higher Ca content results in higher pH value for condensed water film formed on the steel surface, however, addition of Ni, W, and Mo does not affect pH value of the thin water film. The steels containing a high amount of Ca, Ni, W and Mo showed a dense and compact rust layer with enhanced amount of ${\alpha}-FeOOH$. Addition of Ni, W and Mo in Ca-modified weathering steel shows anion-selectivity and contributes to lower the permeability of $Cl^{-}$ ions. Effect of each alloying element on the formation of protective rust layer will be discussed in detail with respect to corrosion resistance.

Fe-Al-Cr계 합금의 부식거동에 미치는 Al 및 Cr 합금원소의 영향 (Effects of Al and Cr Alloying Elements on the Corrosion Behavior of Fe-Al-Cr Alloy System)

  • 최한철
    • 한국표면공학회지
    • /
    • 제38권6호
    • /
    • pp.241-247
    • /
    • 2005
  • Effects of Al and Cr alloying elements on the corrosion behavior of Fe-Al-Cr alloy system was investigated using potentiodynamic and cyclic potentiodynamic polarization tests(CPPT) in the $H_2SO_4$ and HCI solutions. The corrosion morphologies in Fe-Al-Cr alloy were analysed by utilizing scanning electron microscopy(SEM) and EDX. It was found that the corrosion potential of Fe-20Cr-20Al was highest whereas the critical anodic current density and passive current density were lower than that of the other alloys in 0.1 M $H_2SO_4$ solution. The second anodic peak at 1000 mV disappeared in the case of alloys containing high Al and low Cr contents. Pitting potential increased with increasing Cr content and repassivation potential decreased with decreasing Al content in 0.1 M HCI solution. Fe-Al-Cr alloy containing high Al and Cr contents showed remarkably improved pitting resistance against $Cl^-$ attack from pit morphologies.

티타늄 용사피막을 이용한 주철의 레이저 표면합금화 (Laser Assisted Surface Alloying of Cast Iron with Thermal Sprayed Titanium Coatings)

  • 박홍일;김성규;이병우
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.393-401
    • /
    • 1997
  • Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a $CO_2$ laser to produce the wear resistant composite layer. From the experimental results of this study, it was possible to composite TiC particles on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of laser remelted cast iron substrate without titanium coating was about $1{\times}10^4$ K/s to $1{\times}10^5$ K/s in the order under the condition used in this study. The microstructure of alloyed layer consisted of three zones, that is, TiC particule crystallized zone (MHV $400{\sim}500$), the mixed zone of TiC particule+ledebulite (MHV $650{\sim}900$) and the ledebulite zone (MHV $500{\sim}700$). TiC particules were crystallized as a typical dendritic morphology. The secondary TiC dendrite arms were grown to the polygonized shape and were necking. And then the separated arms became cubic crystal of TiC at the slowly solidified zone. But in the rapidly solidified zone of fusion boundry, the fine granular TiC particules were grouped like grape.

  • PDF

나노복합 코팅 형성을 위한 Ti-Al-X(Cr, Si, B, V) 계 단일 합금 타겟 제조 및 이를 이용해 형성한 코팅 특성 평가 (Fabrication of Ti-Al-X(Cr, Si, B, V) single alloying target material for the formation nanocomposite coating and the properties of the coating formed by Ti-Al-X single alloying target material)

  • 편진호;이한찬;문경일
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.78-79
    • /
    • 2015
  • PVD 공정에서 다성분으로 이루어진 나노복합 코팅을 형성하는 것은 원소들간의 합금화 문제로 인해 어렵다. 따라서 일반적으로 두 개 이상의 원소타겟 또는 멀티타겟을 이용한 PVD+PECVD 의 융합공정에 의해 제조된다. 하지만 멀티타겟을 사용한 공정은 공정의 복잡화가 뒤따르며 신뢰성이 떨어진다. 본 연구에서는 멀티타겟의 단점을 보완하기 위해 Ti-Al-X(Cr, Si, B, V) 단일 합금 타겟을 제작하여 나노복합 코팅을 형성하고자 하였다. 기계적 합금화법을 통해 합금분말을 제조하였으며, 방전플라즈마소결법으로 합금 타겟을 제작하였다. 제작된 타겟을 이용하여 스퍼터링 장치를 통해 박막을 형성 하였다. 그 결과 분말은 밀링 시간 20시간에서 정상상태에 도달하였으며, 더 이상 분말의 입자는 줄어들지 않았다. 이때 분말의 입자크기는 $5{\sim}6{\mu}m$ 이었으며 결정립의 크기는 16~20nm 이었다. 소결을 통해 99% 이상의 진밀도를 갖는 합금타겟을 제작하였으며, 이때 결정립의 크기는 매우 미세하였다. 박막의 경우 모두 30GPa 이상의 고경도 특성을 나타냈다.

  • PDF

플라즈마 용사에 의해 제조한 $Al-SiC_{p}$ 복합재료 코팅층의 고온마찰특성 (High Temperature Friction Characteristic of $Al-SiC_{p}$ Composite Coating Prepared by Plasma Thermal Spray)

  • 민준원;유승을;서동수
    • Tribology and Lubricants
    • /
    • 제19권5호
    • /
    • pp.274-279
    • /
    • 2003
  • $Al-SiC_{p}$ composite layer was prepared by plasma thermal spray on aluminum substrate. The homogeneously dispersed composite powder for thermal spray was fabricated by mechanical alloying with ball mill. The friction tests of the composite layers and commercial aluminum alloys for comparison were performed in the temperature range of 20∼$260^{\circ}C$ with the interval of $40^{\circ}C$ with steel counter-face. Friction coefficient was recorded during test sequence, and the microstructure of surface and debris was investigated by optical and scanning electron microscope. Friction coefficients of composite and aluminum alloys at room temperature were similar except pure aluminum. As the temperature increase, friction coefficient was increased rapidly in AC4C, AC2A. But friction coefficient of $Al-SiC_{p}$ composite was not increased so much up to $220^{\circ}C$. Consequently, the reinforcement of $SiC_{p}$ into aluminum matrix increased the stability of friction coefficient as well as wear resistance.