• Title/Summary/Keyword: Surf-scaling parameter

Search Result 1, Processing Time 0.015 seconds

Application of the Artificial Coral Reef as a Coastal Erosion Prevention Method with Numerical-Physical Combined Analysis (Case Study: Cheonjin-Bongpo Beach, Kangwon Province, South Korea)

  • Hong, Sunghoon;Jeong, Yeon Myeong;Kim, Taeyoon;Huynh, Van Men;Kim, Inho;Nam, Jungmin;Hur, Dong Soo;Lee, Jooyong;Kwon, Soonchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2021
  • Artificial Coral Reefs (ACRs) have been introduced to help solve coastal erosion problems, but their feasibility has not been assessed with field data. This study conducted a feasibility analysis of ACRs on their erosion mitigation effects by performing a case study of Cheonjin-Bongpo beach, South Korea. A numerical-physical combined analysis was carried out using a SWAN model simulation and physical model test with a scale of 1/25 based on field observations of Cheonjin-Bongpo beach. Both Dean's parameter and the surf-scaling parameter were applied to comparative analysis between the absence and presence conditions of the ACR. The results for this combined method indicate that ACR attenuates the wave height significantly (59~71%). Furthermore, ACR helps decrease the mass flux (~50%), undertow (~80%), and maximum wave set up (~61%). The decreases in Dean's parameter (~66%) and the surf-scaling parameter suggest that the wave properties changed from the dissipative type to the reflective type even under high wave conditions. Consequently, an ACR can enhance shoreline stability.