• Title/Summary/Keyword: Suppressor

Search Result 887, Processing Time 0.03 seconds

A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive (단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구)

  • Kim, Yu-Jeong;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

FLOW CYTOMETRIC ANALYSIS OF LYMPHOCYTE AND CYCLING CELL DISTRIBUTION IN PERIAPICAL LESIONS (유세포 분석기를 이용한 치근단 병소의 임파구 조성 및 CYCLING CELL 분포에 관한 연구)

  • Oh, Tae-Seok;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.317-340
    • /
    • 1993
  • This study was designed 1) to compare the distributions of periapical inflammatory cells and 2) to identify lymphocytes and compare the lymphocyte distribution with T lymphocyte subpopulation and then 3) to examine the distribution of cycling cell in human dental periapical lesions. From each of the twenty-five human dental periapical lesions observed one small portion was fixed, embeded in paraffin, sectioned serially and stained with HE. The periapical inflammatory cells were counted to obtain the relative concentration of lymphocyte, plasma cell, macrophage and neutrophil. The large part of each lesion was analysed using Flow cytometer and monoclonal antibodies to obtain the relative concentration of T lymphocyte, B lymphocyte, T'helper cell and T suppressor/cytotoxic cell. In addition to that, seven human dental periapical lesions were examined with DNA analysis to observe the distribution of cycling cell. Following results were obtained: 1. 24 cases of the 32 periapical lesions examined were diagnosed as periapical granuloma and the remaining 8 cases as periapical cyst. Lymphocytes comprised 42.1% of total inflammatory cells in periapical granuloma and 41.8% in periapical cyst. Corresponding percentages for macrophages were 33.8% and 30.3%; for plasma cells, 15.9% and 19.0%; for neutrophils, 8.2% and 8.8%. 2. All of the periapical lesions examined had T lymphocyte, B lymphocyte, T helper cell, T suppressor/cytotoxic cell. And in all cases, T lymphocytes were observed predominantly more than B lymphocytes. 3. In 2 cases of the control group only T lymphocytes were found, and in the remaining 2 cases T lymphocytes were observed predominantly. 4. T helper cells were observed predominantly more than T suppressor/cytotoxic cells in all cases of perapical granulomas. 5. T suppressor/cytotoxic cells were observed predominantly more than T helper cells in 4 cases of periapical cysts (total 5 cases were examined) and only in one case T helper cells were more than T suppressor/cytotoxic cells. 6. In control group, T helper cells were predominant in 2 cases and T helper cells were equivalent to T suppressor/cytotoxic cells in one case. In remaining one case T suppressor/cytotoxic cells were predominant. 7. As the result of DNA analysis, the average proliferating indices of the various groups examined were measured as follows: in the control group 5.45%, in periapical granuloma 6.64%, in periapical cyst 10.1%. The highest index was observed in periapical cyst.

  • PDF

A Study on the Stabilizing Method against Landslide using Slide Suppressor Wall (산사태 억지벽체공법에 관한 연구)

  • Kim, Hong-Taek;Gang, In-Gyu;Yeom, Gyeong-Seop
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.06c
    • /
    • pp.94-110
    • /
    • 1994
  • This paper Voposes a stabilizing method against landslide using slide suppressor wall reinforced with soil nails. Included are a Evuedlwe to predict earth Uessures acing on nailed-slide suppressor wall and a method of analysis of the laterally loaded concrete pile. Based rut the Voposed Vocedure, the emcignt installation type and inclusion angle of nails are analyzed. Also, optimum location of the slide suppressor wall composed of concrete panel and stabilizing pile is examined using the UC Vogram. Finally, an example is given to illustrate the analysis and desisa procedure of the proposed slope reinforcing method.

  • PDF

Dishevelling Wnt and Hippo

  • Kim, Nam Hee;Lee, Yoonmi;Yook, Jong In
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.425-426
    • /
    • 2018
  • As highly conserved signaling cascades of multicellular organisms, Wnt and Hippo pathways control a wide range of cellular activities, including cell adhesion, fate determination, cell cycle, motility, polarity, and metabolism. Dysregulation of those pathways are implicated in many human diseases, including cancer. Similarly to ${\beta}-catenin$ in the Wnt pathway, the YAP transcription co-activator is a major player in Hippo. Although the intracellular dynamics of YAP are well-known to largely depend on phosphorylation by LATS and AMPK kinases, the molecular effector of YAP cytosolic translocation remains unidentified. Recently, we reported that the Dishevelled (DVL), a key scaffolding protein between canonical and non-canonical Wnt pathway, is responsible for nuclear export of phosphorylated YAP. The DVL is also required for YAP intracellular trafficking induced by E-cadherin, ${\alpha}-catenin$, or metabolic stress. Note that the p53/LATS2 and LKB1/AMPK tumor suppressor axes, commonly inactivated in human cancer, govern the reciprocal inhibition between DVL and YAP. Conversely, loss of the tumor suppressor allows co-activation of YAP and Wnt independent of epithelial polarity or contact inhibition in human cancer. These observations provide novel mechanistic insight into (1) a tight molecular connection merging the Wnt and Hippo pathways, and (2) the importance of tumor suppressor contexts with respect to controlled proliferation and epithelial polarity regulated by cell adhesion.

A Study on Designing Flash Suppressor for Reducing Muzzle Flash (총구화염저감용 소염기 설계에 관한 연구)

  • Lee, Joon-Ho;Chae, Je-Wook;Lee, Sung-Bae;Kim, Hyun-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.146-151
    • /
    • 2009
  • It is known that muzzle flash can be generated by the reaction between the oxygen in the air and unburned gunpowder contained in the propellant gas if a barrel is not long enough to burn gunpowder fully inside of the barrel. A hugh muzzle flash, which is a characteristic of small arms with short barrel length, disturbs a shooter in aiming at the target at night by making the shooter blind for a while and endangers the shooter's life by revealing firing position to enemies. In addition, the heat of muzzle flash can deteriorate the performance of thermal sights, which are attached to small arms for effective night combat. In this paper, flash suppressors of different shapes were designed for a newly developed 5.56mm caliber rifle with short barrel length and the performance of each flash suppressor to reduce the muzzle flash was compared by on-site test firing. Through the test firing, a highly efficient design of flash suppressor for reducing the muzzle flash was identified. The result of the paper can be referred when designing flash suppressors for small arms with short barrel length.

The Overview of the Importances of Tumor Suppressor p53 for Investigating Molecular Toxicological Mechanisms of Various Environmental Mutagens (다양한 환경변이원의 분자독성학적 메커니즘 연구에 있어서 항종양 인자 p53의 중요성 고찰)

  • Jung Hwa Jin;Ryu Jae-Chun;Seo Young Rok
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.321-326
    • /
    • 2004
  • The study of p53 tumor suppressor protein is one of most important subjects in an environmental toxicology as well as in cancer biology. Generally, p53 has been known to involve the cell cycle regulation and apoptosis by the activation of its target genes such as p21 and bax in a number of cellular stress responses. In addition, associations of p53 with cellular proteins presumably reflect the involvement of p53 in critical cellular processes such as DNA repair. The complex formation of p53 and exogenous proteins such as viral or cellular proteins has been shown in many cases to play important roles in carcinogenic processes against environmental mutagen. Recently, the disruption of p53 protein by oxidative stress has been also reported to have relevance to carcinogenesis. These findings suggested that the maintaining of stability and functional activity of p53 protein was also important aspect to play as a tumor suppressor protein. Therefore, the detection of functional status of p53 proteins might be an effective biomarker for the cancer and human diseases under the environmental toxicologic carcinogen.

Hypothetical protein predicted to be tumor suppressor: a protein functional analysis

  • Kader, Md. Abdul;Ahammed, Akash;Khan, Md. Sharif;Ashik, Sheikh Abdullah Al;Islam, Md. Shariful;Hossain, Mohammad Uzzal
    • Genomics & Informatics
    • /
    • v.20 no.1
    • /
    • pp.6.1-6.15
    • /
    • 2022
  • Litorilituus sediminis is a Gram-negative, aerobic, novel bacterium under the family of Colwelliaceae, has a stunning hypothetical protein containing domain called von Hippel-Lindau that has significant tumor suppressor activity. Therefore, this study was designed to elucidate the structure and function of the biologically important hypothetical protein EMK97_00595 (QBG34344.1) using several bioinformatics tools. The functional annotation exposed that the hypothetical protein is an extracellular secretory soluble signal peptide and contains the von Hippel-Lindau (VHL; VHL beta) domain that has a significant role in tumor suppression. This domain is conserved throughout evolution, as its homologs are available in various types of the organism like mammals, insects, and nematode. The gene product of VHL has a critical regulatory activity in the ubiquitous oxygen-sensing pathway. This domain has a significant role in inhibiting cell proliferation, angiogenesis progression, kidney cancer, breast cancer, and colon cancer. At last, the current study depicts that the annotated hypothetical protein is linked with tumor suppressor activity which might be of great interest to future research in the higher organism.

IMMUNOHISTOCHEMICAL STUDY ON LYMPHOCYTE DISTRIBUTION IN ENDODONTICALLY TREATED AND UNTREATED PERIAPICAL LESIONS (근관치료전과 후의 치근단 병소에서 임파구의 분포에 관한 면역조직화학적 연구)

  • Oh, Tae-Seok;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.11 no.1
    • /
    • pp.63-75
    • /
    • 1985
  • This study was designed to identify lymphocytes and to compare the lymphocyte distribution in endoodontically treated periapical lesions with that in endodontically untreated periapical lesions by way of immunohistochemical staining. Twenty-one human dental periapical lesions were obtained, frozened, serially sectioned to $4-5{\mu}$, and stained using the three-stage indirect immunoperoxidase technique and monoclonal antibodies for detecting the presence of B,T lymphocyte and T suppressor cell. Following results were obtained; 1. All of the examined periapical lesions had positive staining for B,T lymphocyte and T suppressor cell. 2. The concentration of T lymphocytes in 18 lesions diagnosed as periapical cyst and granuloma in both groups was greater than that of B lymphocytes and 2 periapical lesions identified as abscess in treated lesions had more positive B lymphocytes than positive T lymphocytes. 3. The average numbers of T,B lymphocytes and T suppressor cells in Endodontically treated lesions were lower than those of untreated lesions, but no statistically significant difference was noted. 4. When the distribution ratios of T lymphocytes to B lymphocytes and T suppressor cells to T lymphocytes were compared in Endodontically treated lesions by the histological aspects of the lesions and at the intervals of the duration after Endodontic treatment, a statistically significant change was not found. 5. The mean values of T lymphocytes, B lymphocytes and T suppressor cells in Endodontically treated lesions were markedly decreased in the specimens obtained at 3 month after Endodontic treatment, but no statistically significant difference was found.

  • PDF

Prevention of UV-induced Skin Damage by Activation of Tumor Suppressor Genes p53 and $p14^{ARF}$

  • Petersen, R.;John, S.;Lueder, M.;Borchert, S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.338-351
    • /
    • 2003
  • UV radiation is the most dangerous stress factor among permanent environmental impacts on human skin. Consequences of UV exposure are aberrant tissue architecture, alterations in skin cells including functional changes. Nowadays new kinds of outdoor leisure-time activities and changing environmental conditions make the question of sun protection more important than ever. It is necessary to recognize that self-confident consumers do not consider to change their way of life, they demand modern solutions on the basis of new scientific developments. In the past one fundamental principle of cosmetics was the use of physical and organic filter systems against damaging UV-rays. Today new research results demonstrate that natural protecting cell mechanisms can be activated. Suitable biological actives strongly support the protection function not from the surface but from the inside of the cell. A soy seed preparation (SSP) was proven to stimulate natural skin protective functions. The major functions are an increased energy level and the prevention of DNA damage. These functions can I be defined as biological UV protection. The tumor suppressor protein p53 plays a key role in the regulation of DNA repair. p53 must be transferred into the phosphorylated form to work as transcription factor for genes which are regulating the cell cycle or organizing DNA repair. A pretreatment with SSP increases the phosphorylation rate of p53 of chronically UV-irradiated human keratinocytes significantly. According to the same test procedure SSP induces a dramatic increase in the expression of the tumor suppressor protein p14$^{ARF}$ that is supporting the p53 activity by blocking the antagonist of p53, the oncoprotein Mdm2. Mdm2, a ubiquitin E3-ligase, downregulates p53 and at the same time it prevents phosphorylation of p53. The positive influence of the tumor suppressor proteins explains the stimulation of DNA repair and prevention of sunburn cell formation by SSP, which was proven in cell culture experiments. In vivo the increased skin tolerance against UV irradiation by SSP could be confirmed too. We have assumed, that an increased repair potential provides full cell functionality.y.

  • PDF

Intragenic Suppressors for Expory-defective Signal Sequence Mutation of Ribose-binding Protein in Escherichia coli (대장균 리보스 결합단백질의 신호배열 변이에 대한 숙성체 부위의 회복돌연변이)

  • 이영희;송택선;김정호;박순희;박찬규
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.270-277
    • /
    • 1991
  • A mutational alteration in the signal sequence of ribose-binding protein (RBP) of Escherichia coli, rbsB103, completely blocks the export of the protein to the periplasm. Intragenic suppressors for this mutation have been selected on minimal medium with ribose as a sole carbon source. Six suppressor mutations were characterized in detail and were found to have single amino acid wubstitution in the mature portion of RBP, which resulted in the mobility shift of the proteins on SDS polyacrylamide gel. Amino acid changes of these suppressors were localized in several peptides which are packed to form the N terminal domain of typical bilobate conformation of RBP. The involvement of SecB, a molecular chaperone, was investigated in the suppression of signal sequence mutation. Translocation efficency was found to be increased by the presence of SecB for all suppressors. It is likely that the folding characteristics of RBP altered by the suppressor mutations affect the affinity of interaction between SecB and RBP.

  • PDF