• Title/Summary/Keyword: Support vector machines(SVM)

Search Result 286, Processing Time 0.032 seconds

Fault Diagnosis of Low Speed Bearing Using Support Vector Machine

  • Widodo, Achmad;Son, Jong-Duk;Yang, Bo-Suk;Gu, Dong-Sik;Choi, Byeong-Keun;Kim, Yong-Han;Tan, Andy C.C;Mathew, Joseph
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.891-894
    • /
    • 2007
  • This study presents fault diagnosis of low speed bearing using support vector machine (SVM). The data used in the experiment was acquired using acoustic emission (AE) sensor and accelerometer. The aim of this study is to compare the performance of fault diagnosis based on AE signal and vibration signal with same load and speed. A low speed test rig was developed to simulate various defects with shaft speeds as low as 10 rpm under several loading conditions. In this study, component analysis was also performed to extract the feature and reduce the dimensionality of original data feature. Moreover, the classification for fault diagnosis was also conducted using original data feature without feature extraction. The result shows that extracted feature from AE sensor gave better performance in faults classification.

  • PDF

An Empirical Comparison of Machine Learning Models for Classifying Emotions in Korean Twitter (한국어 트위터의 감정 분류를 위한 기계학습의 실증적 비교)

  • Lim, Joa-Sang;Kim, Jin-Man
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.232-239
    • /
    • 2014
  • As online texts have been rapidly growing, their automatic classification gains more interest with machine learning methods. Nevertheless, comparatively few research could be found, aiming for Korean texts. Evaluating them with statistical methods are also rare. This study took a sample of tweets and used machine learning methods to classify emotions with features of morphemes and n-grams. As a result, about 76% of emotions contained in tweets was correctly classified. Of the two methods compared in this study, Support Vector Machines were found more accurate than Na$\ddot{i}$ve Bayes. The linear model of SVM was not inferior to the non-linear one. Morphological features did not contribute to accuracy more than did the n-grams.

Semi-supervised classification with LS-SVM formulation (최소제곱 서포터벡터기계 형태의 준지도분류)

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.461-470
    • /
    • 2010
  • Semi supervised classification which is a method using labeled and unlabeled data has considerable attention in recent years. Among various methods the graph based manifold regularization is proved to be an attractive method. Least squares support vector machine is gaining a lot of popularities in analyzing nonlinear data. We propose a semi supervised classification algorithm using the least squares support vector machines. The proposed algorithm is based on the manifold regularization. In this paper we show that the proposed method can use unlabeled data efficiently.

통계적 분류방법을 이용한 문화재 정보 분석

  • Kang, Min-Gu;Sung, Su-Jin;Lee, Jin-Young;Na, Jong-Hwa
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.120-125
    • /
    • 2009
  • 본 논문에서는 통계적 분류방법을 이용하여 문화재 자료의 분석을 수행하였다. 분류방법으로는 선형판별분석, 로지스틱회귀분석, 의사결정나무분석, 신경망분석, SVM분석을 사용하였다. 각각의 분류방법에 대한 개념 및 이론에 대해 간략히 소개하고, 실제자료 분석에서는 "지역별 문화재 통계분석 및 모형개발 연구 1차(2008)"에 사용된 자료 중 익산시 자료를 근거로 매장문화재에 대한 분류방법별 적합모형을 구축하였다. 구축된 모형과 모의실험의 결과를 통해 각각의 적합모형에 대한 비교를 수행하여 모형의 성능을 비교하였다. 분석에 사용된 도구로는 최근 가장 관심을 갖는 R-project를 사용하였다.

  • PDF

Subtype classification of Human Breast Cancer via Kernel methods and Pattern Analysis of Clinical Outcome over the feature space (Kernel Methods를 이용한 Human Breast Cancer의 subtype의 분류 및 Feature space에서 Clinical Outcome의 pattern 분석)

  • Kim, Hey-Jin;Park, Seungjin;Bang, Sung-Uang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.175-177
    • /
    • 2003
  • This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.

  • PDF

Defect Classification of Components for SMT Inspection Machines (SMT 검사기를 위한 불량유형의 자동 분류 방법)

  • Lee, Jae-Seol;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.982-987
    • /
    • 2015
  • The inspection machine in SMT (Surface Mount Technology) line detects the assembly defects such as missing, misalignment, loosing, or tombstone. We propose a new method to classify the defect types of chip components by processing the image of PCB. Two original images are obtained from horizontal lighting and vertical lighting. The image of the component is divided into two soldering regions and one packaging region. The features are extracted by appling the PCA (Principle Component Analysis) to each region. The MLP (Multilayer Perceptron) and SVM (Support Vector Machine) are then used to classify the defect types by learning. The experimental results are presented to show the usefulness of the proposed method.

The Research for an enhanced Localization in Wireless Sensor Networks based on Support Vector Machines (서포트 벡터 머신을 기초로 한 무선 센서 네트워크 환경에서 위치 추정 향상 방안 연구)

  • Lim, Jae-Hoon;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1899-1900
    • /
    • 2008
  • 현재 센서 네트워크에서 센서의 위치를 추정(Localization) 하고자 하는 많은 방법들이 나와 있고, 계속해서 연구 주제로 다루어 지고 있다. 이 논문에서는 서포트 벡터 머신(SVM)의 기본적인 내용과 센서 네트워크 분야에서 위치 추정 분야에서 다루어지고 내용들을 서술하고 마지막으로 서포트 벡터 머신을 이용하여, 개선되고 향상된 algorithm을 제시하고자 하는 것이 아닌 SVM을 이용한 적용 사례들과 연구 동향들에 대해 살펴본 뒤 그것들의 적용방법들과 갖는 한계점들, 그리고 그것을 이용한 미래에 연구방향에 대해 고찰해 보고자 한다.

  • PDF

Clause Boundary Identification Using Support Vector Machines (SVM모델을 이용한 절 경계 인식)

  • Lee, Hyun-Ju;Kim, Sang-Soo;Park, Seong-Bae;Lee, Sang-Jo
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.151-156
    • /
    • 2004
  • 여러 개의 절로 이루어진 긴 문장에서 절 단위를 인식해냄으로써 구문분석의 복잡도를 크게 줄일 수 있다. 본 논문에서는 SVM 모델을 이용하여 한국어 문장에서 절의 경계를 인식하는 방법을 제안하였다. 첫 번째 단계로 중심어가 후행하는 한국어 문장의 특성을 고려하여 절의 끝점을 먼저 찾고, 첫 번째 단계의 결과인 절의 끝점 정보와 절의 끝점 인식을 위한 정보보다 더 전역적인 정보를 이용해 절의 시작점을 인식하는 두 번째 단계로 나누어 진행하였다. 구문구조 부착 말뭉치를 이용하여 학습하고 실험한 결과, F-score 86.87%와 단어 단위의 정확도 96.63%의 성능을 나타내었다.

  • PDF

Adaptive Kernel Function of SVM for Improving Speech/Music Classification of 3GPP2 SMV

  • Lim, Chung-Soo;Chang, Joon-Hyuk
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.871-879
    • /
    • 2011
  • Because a wide variety of multimedia services are provided through personal wireless communication devices, the demand for efficient bandwidth utilization becomes stronger. This demand naturally results in the introduction of the variable bitrate speech coding concept. One exemplary work is the selectable mode vocoder (SMV) that supports speech/music classification. However, because it has severe limitations in its classification performance, a couple of works to improve speech/music classification by introducing support vector machines (SVMs) have been proposed. While these approaches significantly improved classification accuracy, they did not consider correlations commonly found in speech and music frames. In this paper, we propose a novel and orthogonal approach to improve the speech/music classification of SMV codec by adaptively tuning SVMs based on interframe correlations. According to the experimental results, the proposed algorithm yields improved results in classifying speech and music within the SMV framework.

Named Entity Recognition with Structural SVMs and Pegasos algorithm (Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식)

  • Lee, Changki;Jang, Myungil
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.100-104
    • /
    • 2010
  • 개체명 인식은 정보 추출의 한 단계로서 정보검색 분야 뿐 아니라 질의응답과 요약 분야에서 매우 유용하게 사용되고 있다. 본 논문에서는 structural Support Vector Machines(structural SVMs) 및 수정된 Pegasos 알고리즘을 이용한 한국어 개체명 인식 시스템에 대하여 기술하고 기존의 Conditional Random Fields(CRFs)를 이용한 시스템과의 성능을 비교한다. 실험결과 structural SVMs과 수정된 Pegasos 알고리즘이 기존의 CRFs 보다 높은 성능을 보였고(신뢰도 99%에서 통계적으로 유의함), structural SVMs과 수정된 Pegasos 알고리즘의 성능은 큰 차이가 없음(통계적으로 유의하지 않음)을 알 수 있었다. 특히 본 논문에서 제안하는 수정된 Pegasos 알고리즘을 이용한 경우 CRFs를 이용한 시스템보다 높은 성능 (TV 도메인 F1=85.43, 스포츠 도메인 F1=86.79)을 유지하면서 학습 시간은 4%로 줄일 수 있었다.

  • PDF