• Title/Summary/Keyword: Support vector machines(SVM)

Search Result 286, Processing Time 0.03 seconds

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

A Study on automatic assignment of descriptors using machine learning (기계학습을 통한 디스크립터 자동부여에 관한 연구)

  • Kim, Pan-Jun
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.1 s.59
    • /
    • pp.279-299
    • /
    • 2006
  • This study utilizes various approaches of machine learning in the process of automatically assigning descriptors to journal articles. The effectiveness of feature selection and the size of training set were examined, after selecting core journals in the field of information science and organizing test collection from the articles of the past 11 years. Regarding feature selection, after reducing the feature set using $x^2$ statistics(CHI) and criteria that prefer high-frequency features(COS, GSS, JAC), the trained Support Vector Machines(SVM) performed the best. With respect to the size of the training set, it significantly influenced the performance of Support Vector Machines(SVM) and Voted Perceptron(VTP). However, it had little effect on Naive Bayes(NB).

Performance Improvement Method of Face Detection Using SVM (SVM을 이용한 얼굴 검출 성능 향상 방법)

  • Jee, Hyung-Keun;Lee, Kyung-Hee;Chung, Yong-Wha
    • The KIPS Transactions:PartB
    • /
    • v.11B no.1
    • /
    • pp.13-20
    • /
    • 2004
  • In the real-time automatic face recognition technique, accurate face detection is essential and very important part because it has the effect to face recognition performance. In this paper, we use color information, edge information, and binary information to detect candidate regions of eyes from Input image, and then detect face candidate region using the center point of the detected eyes. We verify both eye candidate region and face candidate region using Support Vector Machines(SVM). It is possible to perform fast and reliable face detection because we can protect false detection through these verification process. From the experimental results, we confirmed the Proposed algorithm in this paper shows excellent face detection rate over 99%.

An Intrusion Detection System Using Principle Component Analysis and Support Vector Machines (주성분 분석과 서포트 벡터 머신을 이용한 침입 탐지 시스템)

  • 정성윤;강병두;김상균
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.314-317
    • /
    • 2003
  • 기존의 침입탐지 시스템에서는 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나, 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 한다. 그리고 그 규칙과 완전히 일치되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis; 이하 PCA)과 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입탐지 시스템을 제안한다. 네트워크 상의 패킷은 PCA를 이용하여 결정된 주성분 공간에서 해석되고, 정상적인 흐름과 비정상적인 흐름에 대한 패킷이미지패턴으로 정규화 된다. 이러한 두 가지 클래스에 대한 SVM 분류기를 구현한다. 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.

  • PDF

Categorization of Korean documents using Support Vector Machines (SVM을 이용한 한글문서 범주화 실험)

  • 최성환;임혜영;정영미
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2000.08a
    • /
    • pp.29-32
    • /
    • 2000
  • 자동문서 범주화에 이용되는 학습분류기 중에서 SVM은 자질 차원을 축소하지 않고도 좋은 성능을 보이고 있다. 본 실험에서는 KTSET 텍스트 컬렉션을 대상으로 두 개의 SVM 분류기를 이용하여 자질축소 및 자질표현에 따른 성능비교 실험을 하였다. 자질축소를 위하여 $\chi$$^2$통계량을 자질선정기준으로 사용하였으며, 자질값으로는 단어빈도 및 문헌빈도의 두 요소로 구성되는 다양한 가중치를 사용하였다. 실험결과 SVM은 자질축소에 큰 영향을 받지 않고 가중치 유형에 따라 성능의 차이를 보였다.

  • PDF

Run-to-Run Fault Detection of Reactive Ion Etching Using Support Vector Machine (Support Vector Machine을 이용한 Reactive ion Etching의 Run-to-Run 오류검출 및 분석)

  • Park Young-Kook;Hong Sang-Jeen;Han Seung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.962-969
    • /
    • 2006
  • To address the importance of the process fault detection for productivity, support vector machines (SVMs) is employed to assist the decision to determine process faults in real-time. The reactive ion etching (RIE) tool data acquired from a production line consist of 59 variables, and each of them consists of 10 data points per second. Principal component analysis (PCA) is first performed to accommodate for real-time data processing by reducing the dimensionality or the data. SVMs for eleven steps or etching m are established with data acquired from baseline runs, and they are further verified with the data from controlled (acceptable) and perturbed (unacceptable) runs. Then, each SVM is further utilized for the fault detection purpose utilizing control limits which is well understood in statistical process control chart. Utilizing SVMs, fault detection of reactive ion etching process is demonstrated with zero false alarm rate of the controlled runs on a run to run basis.

Fault Detection of Reactive Ion Etching Using Time Series Support Vector Machine (Time Series Support Vector Machine을 이용한 Reactive Ion Etching의 오류검출 및 분석)

  • Park Young-Kook;Han Seung-Soo;Hong Sang-J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.247-250
    • /
    • 2006
  • Maximizing the productivity in reactive ion etching, early detection of process equipment anomaly became crucial in current high volume semiconductor manufacturing environment. To address the importance of the process fault detection for productivity, support vector machines (SVMs) is employed to assist the decision to determine process faults in real-time. SVMs for eleven steps of etching runs are established with data acquired from baseline runs, and they are further verified with the data from controlled (acceptable) and perturbed (unacceptable) runs. Then, each SVM is further utilized for the fault detection purpose utilizing control limits which is well understood in statistical process control chart. Utilizing SVMs, fault detection of reactive ion etching process is demonstrated with zero false alarm rate of the controlled runs on a run to run basis.

  • PDF

ESTIMATION OF THE POWER PEAKING FACTOR IN A NUCLEAR REACTOR USING SUPPORT VECTOR MACHINES AND UNCERTAINTY ANALYSIS

  • Bae, In-Ho;Na, Man-Gyun;Lee, Yoon-Joon;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1181-1190
    • /
    • 2009
  • Knowing more about the Local Power Density (LPD) at the hottest part of a nuclear reactor core can provide more important information than knowledge of the LPD at any other position. The LPD at the hottest part needs to be estimated accurately in order to prevent the fuel rod from melting in a nuclear reactor. Support Vector Machines (SVMs) have successfully been applied in classification and regression problems. Therefore, in this paper, the power peaking factor, which is defined as the highest LPD to the average power density in a reactor core, was estimated by SVMs which use numerous measured signals of the reactor coolant system. The SVM models were developed by using a training data set and validated by an independent test data set. The SVM models' uncertainty was analyzed by using 100 sampled training data sets and verification data sets. The prediction intervals were very small, which means that the predicted values were very accurate. The predicted values were then applied to the first fuel cycle of the Yonggwang Nuclear Power Plant Unit 3. The root mean squared error was approximately 0.15%, which is accurate enough for use in LPD monitoring and for core protection that uses LPD estimation.

The Classification of Electrocardiograph Arrhythmia Patterns using Fuzzy Support Vector Machines

  • Lee, Soo-Yong;Ahn, Deok-Yong;Song, Mi-Hae;Lee, Kyoung-Joung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.204-210
    • /
    • 2011
  • This paper proposes a fuzzy support vector machine ($FSVM_n$) pattern classifier to classify the arrhythmia patterns of an electrocardiograph (ECG). The $FSVM_n$ is a pattern classifier which combines n-dimensional fuzzy membership functions with a slack variable of SVM. To evaluate the performance of the proposed classifier, the MIT/BIH ECG database, which is a standard database for evaluating arrhythmia detection, was used. The pattern classification experiment showed that, when classifying ECG into four patterns - NSR, VT, VF, and NSR, VT, and VF classification rate resulted in 99.42%, 99.00%, and 99.79%, respectively. As a result, the $FSVM_n$ shows better pattern classification performance than the existing SVM and FSVM algorithms.