• 제목/요약/키워드: Support surface

검색결과 1,339건 처리시간 0.026초

Support vector regression을 응용한 barbaralane의 global potential energy surface 재구성

  • 류성옥;최성환;김우연
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.1-13
    • /
    • 2014
  • Potential Energy Surface(PES)를 양자 계산을 통해 알아내는 것은 화학 반응을 이해하는 데에 큰 도움이 된다. 이를테면 Transition State(TS)의 configuration을 알 수 있고, 따라서 reaction path와 활성화 에너지 값을 예측하여, 진행시키고자 하는 화학반응의 이해를 도울 수 있다. 하지만 PES를 그리기 위해서는 해당 분자의 다양한 configuration에 대한 singlet point energy 계산이 필요하기 때문에, 계산적인 측면에서 많은 비용을 요구한다. 따라서 product와 reactant의 구조와 같은 critical point의 정보를 이용하여 최소한의 configuration을 sampling하여 전체 PES를 재구성하는 기계학습 알고리즘을 개발하여 다차원 PES 상에서의 화학반응의 예측을 가능하게 하고자 한다. 본 연구에서는 Barbaralane의 두 안정화 된 구조의 critical point로 하여 이 주변을 random normal distribution하여, B3LYP/6-31G(d) level의 DFT 계산을 통해 relaxed scanning하여 구조와 에너지를 구하였으며, 이 정보를 Support Vector Regression(SVR) 알고리즘을 적용하여 PES를 재구현하였으며, 반응경로와 TS의 구조 그리고 활성화 에너지를 구하였다. 또한 본 기계학습 알고리즘을 바닥상태에서 일어나는 반응이 아닌, 들뜬 상태와 전자 구조가 변하는 화학반응, avoid crossing, conical intersection과 같은 Non-adiabatic frame에서 일어나는 현상에 적용 가능성을 논하고자 한다.

  • PDF

Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

  • Jo, Dong Hyun;Park, Cheonggi;Jung, Hyunchul;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.382-390
    • /
    • 2015
  • Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb $CO_2$. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low $CO_2$ capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for $CO_2$ capture.

승마 운동이 만성 요통환자의 균형능력에 미치는 영향 (The Effect of Horse-Riding Exercise on the Balance Ability in the Chronic Low Back Pain Patients)

  • 이채우;김현수;이인실
    • 대한통합의학회지
    • /
    • 제2권1호
    • /
    • pp.101-108
    • /
    • 2014
  • Purpose : The purpose of this study was to investigate the effect of horse riding exercise for chronic low back pain patients. Method : 30 subjects in H-equestrian and N-equestrian, K & B hospital were randomly divided two group, instability support surface exercise group and horse-riding exercise group. Each group carried out 40 minutes exercise three times a week for 8 weeks. VAS were measured for sway path of COP movement during standing were measured for evaluation of static balance ability in balance performance monitor(BPM). Result : The results were as follows, scales of VAS between instability support surface exercise and horse-riding exercise groups in post-test, were significantly different in measures(p<.05). And there were significant in two group after exercise(p<.05). The static balance scales of sway path between instability support surface exercise and horse-riding exercise groups in post-test, were significantly different in measures(p<.05). And there were significant in two group after exercise(p<.05). Conclusion : These finding revealed that horse-riding exercise was effective on VAS and static balance abiility of chronic low back pain patient so that these exercise can be new altematives for increase of stability ability in chronic low back pain patients.

Application of Response Surface Methodology and Plackett Burman Design assisted with Support Vector Machine for the Optimization of Nitrilase Production by Bacillus subtilis AGAB-2

  • Ashish Bhatt;Darshankumar Prajapati;Akshaya Gupte
    • 한국미생물·생명공학회지
    • /
    • 제51권1호
    • /
    • pp.69-82
    • /
    • 2023
  • Nitrilases are a hydrolase group of enzymes that catalyzes nitrile compounds and produce industrially important organic acids. The current objective is to optimize nitrilase production using statistical methods assisted with artificial intelligence (AI) tool from novel nitrile degrading isolate. A nitrile hydrolyzing bacteria Bacillus subtilis AGAB-2 (GenBank Ascension number- MW857547) was isolated from industrial effluent waste through an enrichment culture technique. The culture conditions were optimized by creating an orthogonal design with 7 variables to investigate the effect of the significant factors on nitrilase activity. On the basis of obtained data, an AI-driven support vector machine was used for the fitted regression, which yielded new sets of predicted responses with zero mean error and reduced root mean square error. The results of the above global optimization were regarded as the theoretical optimal function conditions. Nitrilase activity of 9832 ± 15.3 U/ml was obtained under optimized conditions, which is a 5.3-fold increase in compared to unoptimized (1822 ± 18.42 U/ml). The statistical optimization method involving Plackett Burman Design and Response surface methodology in combination with an AI tool created a better response prediction model with a significant improvement in enzyme production.

Electro-Spun RuO2 나노선 지지체에 담지된 Pt촉매의 메탄올 Electro-Oxidation 특성 (Methanol Electro-Oxidation of Electro-Spun RuO2 Nanowire Supported Pt Catalysts)

  • 염용식;안효진
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.419-424
    • /
    • 2011
  • Pt nanoparticle catalysts incorporated on $RuO_2$ nanowire support were successfully synthesized and their electrochemical properties, such as methanol electro-oxidation and electrochemically active surface (EAS) area, were demonstrated for direct methanol fuel cells (DMFCs). After fabricating $RuO_2$ nanowire support via an electrospinning method, two different types of incorporated Pt nanoparticle electrocatalysts were prepared using a precipitation method via the reaction with $NaBH_4$ as a reducing agent. One electrocatalyst was 20 wt% Pt/$RuO_2$, and the other was 40 wt% Pt/$RuO_2$. The structural and electrochemical properties of the Pt nanoparticle electrocatalysts incorporated on electrospun $RuO_2$ nanowire support were investigated using a bright field transmission electron microscopy (bright field TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. The bright field TEM, XRD, and XPS results indicate that Pt nanoparticle electrocatalysts with sizes of approximately 2-4 nm were well incorporated on the electrospun $RuO_2$ nanowire support with a diameter of approximately 50 nm. The cyclic voltammetry results showed that the Pt nanoparticle catalysts incorporated on the electrospun $RuO_2$ nanowire support give superior catalytic activity in the methanol electro-oxidation and a higher electrochemically active surface (EAS) area when compared with the electrospun Pt nanowire electrocatalysts without the $RuO_2$ nanowire support. Therefore, the Pt nanoparticle catalysts incorporated on the electrospun $RuO_2$ nanowire support could be a promising electrode for direct methanol fuel cells (DMFCs).

안정 및 불안정 지지면에서 시각 조건이 정적 균형에 미치는 영향 (Effect of Support Surface and Visual Condition on Static Balance)

  • 노수현;박은정;홍지헌;유재호;김진섭;이동엽
    • 한국융합학회논문지
    • /
    • 제10권7호
    • /
    • pp.47-54
    • /
    • 2019
  • 본 연구의 목적은 안정한 지지면, 불안정한 지지면에서 시각 조건이 균형에 미치는 영향에 대해 알아보고자 하였다. 건강한 성인 30명이 본 연구에 참여하였다. 시각 조건은 수직, 수평, 대각선으로 설정하였고 불안정한 지지면에서의 균형 측정을 위해 패드를 밟고 측정을 수행하였다. 균형측정기를 통해 안정성 지수(General Stability Index)와 체중 분포 지수(Weight Distribution Index), 체중 분포도(Weight Distribution)를 측정하였다. 지면 간 비교는 대응 표본 t검정을 하였고, 지면 내 비교는 일원배치분산분석을 사용하였다. 불안정한 지지면에서 시각 조건 내 (수평, 수직)의 안정성지수는 유의한 차이를 보였고(p<.05), 지면간의 비교에서 체중분포지수에서 유의한 차이가 있었다(p<.05). 체중분포도는 수평 방향의 시각의 모든 지지면에서 왼쪽과 오른쪽 사이의 유의한 차이가 나타났다(p<.05). 정적 균형 훈련시, 수평보다 수직과 대각선의 시각 조건을 준다면 균형 훈련에 도움을 줄 수 있다고 사료된다.

평지붕 설치 태양광시스템의 표면형태 조사·분석 (Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System)

  • 이응직
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

The Effects of a Bridging Exercise Applying Changes in the Base of Support for the Shoulders on Trunk Muscle Activation

  • Lee, Tae-Gyu;Park, Chan-Hyun;Son, Ho-Hee
    • 대한물리의학회지
    • /
    • 제11권3호
    • /
    • pp.97-104
    • /
    • 2016
  • PURPOSE: Bridge exercise is widely used in rehabilitation exercise for trunk stabilization through various applications in clinical practice. However, there is a lack of studies changing the base of support for the shoulders. The purpose of this study is to investigate the changes in the base of support for the shoulders of trunk muscle activation during bridge exercise. METHODS: 20 healthy subjects (10 men, 10 women) in their twenties were participated in this study. They performed 5 bridge exercises (bridge exercise with their shoulders on a stable table (1/2 knee height, knee height), and on a sling (1/2 knee height, knee height), conventional bridge exercise. The surface electromyography were used for rectus abdominis (RA), internal oblique (IO), external oblique (EO), and erector spinae (ES). RESULTS: During bridge exercise that their shoulders on the sling of 1/2 knee height, the RA, EO, IO muscle activities were significant increased. And during bridge exercise that their shoulders on the stable surface of knee height, the IO/RA ratio were higher than other positions but there were no significant difference between positions for EO/RA, IO/RA ratio. CONCLUSION: Based on this result, using various bases of support and changing the height of bridging exercise may be used to provide effective trunk stabilization exercises.

기판의 열확산에 의한 3차원 공랭모듈로부터의 열전달촉진에 관한 연구 (Enhancement of Heat Transfer from an Air-Cooled 3-Dimensional Module by means of Heat Spreading in the Board)

  • 박상희;홍택
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1022-1030
    • /
    • 2002
  • The experiments were performed with a $31{\times}31{\times}7mm^3$ simulated 3-dimensional module on the thermal conductive board of a parallel plate channel. The convective thermal conductance for the path from the module surface directly to airflow and conjugate thermal conductance for the path leading from the module to the floor by way of a module support, then, to the airflow were determined with several combinations of module-support-construction(210, 0.32, 0.021 K/W)/floor-material(398, 0.236W/mK) and channel height(15-30mm). As the result, it was found that the conjugate thermal conductance and the temperature distribution around the module depend on the thermal resistance of the module support, and the channel height. These configurations were designed to investigate on the feasibility of using the substrate as an effective heat spreader in the forced convective air-cooling of surface mounted heat source. The experimental results were discussed in the light of interactive nature of heat transfer through two paths, one directed from the module to the airflow and the other via the module support and the floor to the air.

광학거울 시스템의 지지구조 설계를 위한 라그랑지 방정식과 최적화 기법 적용에 의한 효과분석 (The Effectiveness Analysis Due to the Use of Lagrange Equation and the Optimization Technology for Design of the Support Structure of the Optical Mirror System)

  • 김학인;남병욱;김광태;김병운
    • 한국군사과학기술학회지
    • /
    • 제21권3호
    • /
    • pp.264-278
    • /
    • 2018
  • The support structure of an optical mirror system is the one of the important design elements because the one affects the optical aberrations of the mirror surface. In this paper, Lagrange equation of the moving body of the fast steering mirror system(FSM) has been formulated to use with optimization design. Major goals for optimization are to assign the reasonably flexible stiffness to the structure and to enhance the first natural frequency of the mirror and support system in aid of more affordable control bandwidth for the FSM. Pursuing these purposes with the proposed method, the finite element analysis(FEA), optimization technique and the Zernike polynomial estimation are used for the design effects. It is concluded that the proposed approach for design well guides toward the desired design goals with regards to both structural and optical performances.