• Title/Summary/Keyword: Support Vector Regressor

Search Result 8, Processing Time 0.024 seconds

Research on the application of Machine Learning to threat assessment of combat systems

  • Seung-Joon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.47-55
    • /
    • 2023
  • This paper presents a method for predicting the threat index of combat systems using Gradient Boosting Regressors and Support Vector Regressors among machine learning models. Currently, combat systems are software that emphasizes safety and reliability, so the application of AI technology that is not guaranteed to be reliable is restricted by policy, and as a result, the electrified domestic combat systems are not equipped with AI technology. However, in order to respond to the policy direction of the Ministry of National Defense, which aims to electrify AI, we conducted a study to secure the basic technology required for the application of machine learning in combat systems. After collecting the data required for threat index evaluation, the study determined the prediction accuracy of the trained model by processing and refining the data, selecting the machine learning model, and selecting the optimal hyper-parameters. As a result, the model score for the test data was over 99 points, confirming the applicability of machine learning models to combat systems.

Estimation of lightweight aggregate concrete characteristics using a novel stacking ensemble approach

  • Kaloop, Mosbeh R.;Bardhan, Abidhan;Hu, Jong Wan;Abd-Elrahman, Mohamed
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.499-512
    • /
    • 2022
  • This study investigates the efficiency of ensemble machine learning for predicting the lightweight-aggregate concrete (LWC) characteristics. A stacking ensemble (STEN) approach was proposed to estimate the dry density (DD) and 28 days compressive strength (Fc-28) of LWC using two meta-models called random forest regressor (RFR) and extra tree regressor (ETR), and two novel ensemble models called STEN-RFR and STEN-ETR, were constructed. Four standalone machine learning models including artificial neural network, gradient boosting regression, K neighbor regression, and support vector regression were used to compare the performance of the proposed models. For this purpose, a sum of 140 LWC mixtures with 21 influencing parameters for producing LWC with a density less than 1000 kg/m3, were used. Based on the experimental results with multiple performance criteria, it can be concluded that the proposed STEN-ETR model can be used to estimate the DD and Fc-28 of LWC. Moreover, the STEN-ETR approach was found to be a significant technique in prediction DD and Fc-28 of LWC with minimal prediction error. In the validation phase, the accuracy of the proposed STEN-ETR model in predicting DD and Fc-28 was found to be 96.79% and 81.50%, respectively. In addition, the significance of cement, water-cement ratio, silica fume, and aggregate with expanded glass variables is efficient in modeling DD and Fc-28 of LWC.

A Study on the Performance Evaluation of Machine Learning for Predicting the Number of Movie Audiences (영화 관객 수 예측을 위한 기계학습 기법의 성능 평가 연구)

  • Jeong, Chan-Mi;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2020
  • The accurate prediction of box office in the early stage is crucial for film industry to make better managerial decision. With aims to improve the prediction performance, the purpose of this paper is to evaluate the use of machine learning methods. We tested both classification and regression based methods including k-NN, SVM and Random Forest. We first evaluate input variables, which show that reputation-related information generated during the first two-week period after release is significant. Prediction test results show that regression based methods provides lower prediction error, and Random Forest particularly outperforms other machine learning methods. Regression based method has better prediction power when films have small box office earnings. On the other hand, classification based method works better for predicting large box office earnings.

Assessment of compressive strength of high-performance concrete using soft computing approaches

  • Chukwuemeka Daniel;Jitendra Khatti;Kamaldeep Singh Grover
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.55-75
    • /
    • 2024
  • The present study introduces an optimum performance soft computing model for predicting the compressive strength of high-performance concrete (HPC) by comparing models based on conventional (kernel-based, covariance function-based, and tree-based), advanced machine (least square support vector machine-LSSVM and minimax probability machine regressor-MPMR), and deep (artificial neural network-ANN) learning approaches using a common database for the first time. A compressive strength database, having results of 1030 concrete samples, has been compiled from the literature and preprocessed. For the purpose of training, testing, and validation of soft computing models, 803, 101, and 101 data points have been selected arbitrarily from preprocessed data points, i.e., 1005. Thirteen performance metrics, including three new metrics, i.e., a20-index, index of agreement, and index of scatter, have been implemented for each model. The performance comparison reveals that the SVM (kernel-based), ET (tree-based), MPMR (advanced), and ANN (deep) models have achieved higher performance in predicting the compressive strength of HPC. From the overall analysis of performance, accuracy, Taylor plot, accuracy metric, regression error characteristics curve, Anderson-Darling, Wilcoxon, Uncertainty, and reliability, it has been observed that model CS4 based on the ensemble tree has been recognized as an optimum performance model with higher performance, i.e., a correlation coefficient of 0.9352, root mean square error of 5.76 MPa, and mean absolute error of 4.1069 MPa. The present study also reveals that multicollinearity affects the prediction accuracy of Gaussian process regression, decision tree, multilinear regression, and adaptive boosting regressor models, novel research in compressive strength prediction of HPC. The cosine sensitivity analysis reveals that the prediction of compressive strength of HPC is highly affected by cement content, fine aggregate, coarse aggregate, and water content.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

A Novel Approach to Predict the Longevity in Alzheimer's Patients Based on Rate of Cognitive Deterioration using Fuzzy Logic Based Feature Extraction Algorithm

  • Sridevi, Mutyala;B.R., Arun Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.79-86
    • /
    • 2021
  • Alzheimer's is a chronic progressive disease which exhibits varied symptoms and behavioural traits from person to person. The deterioration in cognitive abilities is more noticeable through their Activities and Instrumental Activities of Daily Living rather than biological markers. This information discussed in social media communities was collected and features were extracted by using the proposed fuzzy logic based algorithm to address the uncertainties and imprecision in the data reported. The data thus obtained is used to train machine learning models in order to predict the longevity of the patients. Models built on features extracted using the proposed algorithm performs better than models trained on full set of features. Important findings are discussed and Support Vector Regressor with RBF kernel is identified as the best performing model in predicting the longevity of Alzheimer's patients. The results would prove to be of high value for healthcare practitioners and palliative care providers to design interventions that can alleviate the trauma faced by patients and caregivers due to chronic diseases.

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.

Data-driven Model Prediction of Harmful Cyanobacterial Blooms in the Nakdong River in Response to Increased Temperatures Under Climate Change Scenarios (기후변화 시나리오의 기온상승에 따른 낙동강 남세균 발생 예측을 위한 데이터 기반 모델 시뮬레이션)

  • Gayeon Jang;Minkyoung Jo;Jayun Kim;Sangjun Kim;Himchan Park;Joonhong Park
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.121-129
    • /
    • 2024
  • Harmful cyanobacterial blooms (HCBs) are caused by the rapid proliferation of cyanobacteria and are believed to be exacerbated by climate change. However, the extent to which HCBs will be stimulated in the future due to increased temperature remains uncertain. This study aims to predict the future occurrence of cyanobacteria in the Nakdong River, which has the highest incidence of HCBs in South Korea, based on temperature rise scenarios. Representative Concentration Pathways (RCPs) were used as the basis for these scenarios. Data-driven model simulations were conducted, and out of the four machine learning techniques tested (multiple linear regression, support vector regressor, decision tree, and random forest), the random forest model was selected for its relatively high prediction accuracy. The random forest model was used to predict the occurrence of cyanobacteria. The results of boxplot and time-series analyses showed that under the worst-case scenario (RCP8.5 (2100)), where temperature increases significantly, cyanobacterial abundance across all study areas was greatly stimulated. The study also found that the frequencies of HCB occurrences exceeding certain thresholds (100,000 and 1,000,000 cells/mL) increased under both the best-case scenario (RCP2.6 (2050)) and worst-case scenario (RCP8.5 (2100)). These findings suggest that the frequency of HCB occurrences surpassing a certain threshold level can serve as a useful diagnostic indicator of vulnerability to temperature increases caused by climate change. Additionally, this study highlights that water bodies currently susceptible to HCBs are likely to become even more vulnerable with climate change compared to those that are currently less susceptible.