• Title/Summary/Keyword: Support Rotation

Search Result 200, Processing Time 0.026 seconds

Cyclic Seismic Testing of Full-Scale Column-Tree Type Steel Moment Connections (반복재하 실물대 실험에 의한 컬럼-트리(Column-Tree) 형식 철골 모멘트 접합부의 내진거동 연구)

  • Lee, Cheol Ho;Park, Jong Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.629-639
    • /
    • 1998
  • This paper summarizes the results of full-scale cyclic seismic performance tests on three column-tree type steel moment connections. Each test specimen consisted of a $H-600{\times}200$ beam and a $H-400{\times}400$ column of SS41 (SS400). Key parameter included was column PZ (panel zone) strength relative to beam strength. The seismic performance of specimen with stronger PZ tended to be inferior. Total plastic rotations available in the specimens ranged from 1.8 to 3.0 (% rad). The limited test results in this study seem to support the speculation that permitting PZ yielding shall be more beneficial to enhancing total plastic rotation capacity of the moment connection. Beam flange fracture across the heat affected zone and divot-type pullout of the column flange were observed in the tests. A conceptual mechanical model consistent with observed test results was also sought.

  • PDF

A Novel Kinematic Design of a Knee Orthosis to Allow Independent Actuations During Swing and Stance Phases (회전기 및 착지기 분리 구동을 가능케 하는 새로운 무릎 보장구의 기구부 설계)

  • Pyo, Sang-Hun;Kim, Gab-Soon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.814-823
    • /
    • 2011
  • Nowadays many neurological diseases such as stroke and Parkinson diseases are continually increasing. Orthotic devices as well as exoskeletons have been widely developed for supporting movement assistance and therapy of patients. Robotic knee orthosis can compensate stiff-knee gait of the paralyzed limb and can provide patients consistent assistance at wearable environments. With keeping a robotic orthosis wearable, however, it is not easy to develop a compact and safe actuator with fast rotation and high torque for consistent supports of patients during walking. In this paper, we propose a novel kinematic model for a robotic knee orthosis to drive a knee joint with independent actuation during swing and stance phases, which can allow an actuator with fast rotation to control swing motions and an actuator with high torque to control stance motions, respectively. The suggested kinematic model is composed of a hamstring device with a slide-crank mechanism, a quadriceps device with five-bar/six-bar links, and a patella device for knee covering. The quadriceps device operates in five-bar links with 2-dof motions during swing phase and is changed to six-bar links during stance phase by the contact motion to the patella device. The hamstring device operates in a slider-crank mechanism for entire gait cycle. The kinematics and velocity/force relations are analyzed for the quadriceps and hamstring devices. Finally, the adequate actuators for the suggested kinematic model are designed based on normal gait requirements. The suggested kinematic model will allow a robotic knee orthosis to use compact and light actuators with full support during walking.

Pelvic, Hip, and Knee Kinematics of Stair Climbing in People with Genu Varum

  • Chae, Yun Won;Park, Seol;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.1
    • /
    • pp.14-22
    • /
    • 2018
  • Purpose: This study examined the effects of the lower limb alignment on the pelvis, hip, and knee kinematics in people with genu varum during stair walking. Methods: Forty subjects were enrolled in this study. People who had intercondylar distance ${\geq}4cm$ were classified in the genu varum group, and people who had intercondylar distance <4cm and intermalleolar distance <4cm were placed in the control group. 3D motion analysis was used to collect the pelvis, hip, and knee kinematic data while subjects were walking stairs with three steps. Results: During stair ascent, the genu varum group had decreased pelvic lateral tilt and hip adduction at the early stance phase and decreased pelvic lateral tilt at the swing phase compared to the control group. At the same time, they had decreased minimal hip adduction ROM at the early stance and decreased maximum pelvic lateral tilt ROM and minimum hip rotation ROM at the swing phase. During stair descent, the genu varum group had decreased pelvic lateral tilt at the early stance and decreased pelvic lateral tilt and pelvic rotation at the swing phase. In addition, they had decreased pelvic frontal ROM during single limb support and increased knee sagittal ROM during the whole gait cycle. Conclusion: This study suggests that a genu varum deformity could affect the pelvis, hip and knee kinematics. In addition, the biomechanical risk factors that could result in the articular impairments by the excessive loads from lower limb malalignment were identified.

Foundation Design the 151 story Incheon Tower in Reclamation Area

  • Abdelrazaq, Ahmad;Badelow, Frances;Kim, Sung-Ho;Park, Yung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.157-171
    • /
    • 2009
  • A 151 storey super high-rise building located in an area of reclaimed land constructed over soft marine clay in Songdo, Korea is currently under design. This paper describes the design process of the foundation system of the supertall tower, which is required to support the large building vertical and lateral loads and to restrain the horizontal displacement due to wind and seismic forces. The behaviour of the foundation system due to these loads and foundation stiffness influence the design of the building super structure, displacement of the tower, as well as the raft foundation design. Therefore, the design takes in account the interactions between soil, foundation and super structure, so as to achieve a safe and efficient building performance. The site lies entirely within an area of reclamation underlain by up to 20m of soft to firm marine silty clay, which overlies residual soil and a profile of weathered rock. The nature of the foundation rock materials are highly complex and are interpreted as possible roof pendant metamorphic rocks, which within about 50m from the surface have been affected by weathering which has reduced their strength. The presence of closely spaced joints, sheared and crushed zones within the rock has resulted in deeper areas of weathering of over 80m present within the building footprint. The foundation design process described includes the initial stages of geotechnical site characterization using the results of investigation boreholes and geotechnical parameter selection, and a series of detailed two- and three-dimensional numerical analysis for the Tower foundation comprising over 172 bored piles of varying length. The effect of the overall foundation stiffness and rotation under wind and seismic load is also discussed since the foundation rotation has a direct impact on the overall displacement of the tower.

  • PDF

Shoulder Arthrokinematics of Collegiate Ice Hockey Athletes Based on the 3D-2D Model Registration Technique

  • Jeong, Hee Seong;Song, Junbom;Lee, Inje;Kim, Doosup;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.155-161
    • /
    • 2021
  • Objective: There is a lack of studies using the 3D-2D image registration techniques on the mechanism of a shoulder injury for ice hockey players. This study aimed to analyze in vivo 3D glenohumeral joint arthrokinematics in collegiate ice hockey athletes and compare shoulder scaption with or without a hockey stick using the 3D-2D image registration technique. Method: We recruited 12 male elite ice hockey players (age, 19.88 ± 0.65 years). For arthrokinematic analysis of the common shoulder abduction movements of the injury pathogenesis of ice hockey players, participants abducted their dominant arm along the scapular plane and then grabbed a stick using the same motion under C-arm fluoroscopy with 16 frames per second. Computed tomography (CT) scans of the shoulder complex were obtained with a 0.6-mm slice pitch. Data from the humerus translation distances, scapula upward rotation, anterior-posterior tilt, internal to external rotation angles, and scapulohumeral rhythm (SHR) ratio on glenohumeral (GH) joint kinematics were outputted using a MATLAB customized code. Results: The humeral translation in the stick hand compared to the bare hand moved more anterior and more superior until the abduction angle reached 40°. When the GH joint in the stick hand was at the maximal abduction of the scapula, the scapula was externally rotated 2~5° relative to 0°. The SHR ratio relative to the abduction along the scapular plane at 40° indicated a statistically significant difference between the two groups (p < 0.05). Conclusion: With arm loading with the stick, the humeral and scapular kinematics showed a significant correlation in the initial section of the SHR. Although these correlations might be difficult in clinical settings, ice hockey athletes can lead to the movement difference of the scapulohumeral joints with inherent instability.

Using CR System at the Department of Radiation Oncology PACS Evaluation (방사선 종양학과에서 CR System을 이용한 PACS 유용성 평가)

  • Hong, Seung-Il;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.143-149
    • /
    • 2012
  • Today each hospital is trend that change rapidly by up to date, digitization and introducing newest medical treatment equipment. So, we introduce new CR system and supplement film system's shortcoming and PACS, EMR, RTP system's network that is using in hospital harmoniously and accomplish quality improvement of medical treatment and service elevation about business efficiency enlargement and patient Accordingly, we wish to introduce our case that integrate reflex that happen with radiation oncology here upon to PACS using CR system and estimate the availability. We measured that is Gantry, Collimator Star Shot, Light vs. Radiation, HDR QA(Dwell position accuracy) with Medical LINAC(MEVATRON-MX) Then, PACS was implemented on the digital images on the monitor that can be confirmed through the QA. Also, for cooperation with OCS system that is using from present source and impose code that need in treatment in each treatment, did so that Order that connect to network, input to CR may appear, did so that can solve support data mistake (active Pinacle's case supports DICOM3 file from present source but PACS does not support DICOM3 files.) of Pinacle and PACS that is Planning System and look at Planning premier in PACS. All image and data constructed integration to PACS as can refer and conduct premier in Hospital anywhere using CR system. Use Dosimetry IP in Filmless environment and QA's trial such as Light/Radition field size correspondence, gantry rotation axis' accuracy, collimator rotation axis' accuracy, brachy therapy's Dwell position check is available. Business efficiency by decrease and so on of unnecessary human strength consumption was augmented accordingly with session shortening as that integrate premier that is neted with radiation oncology using CR system to PACS. and for the future patient information security is essential.

Behavior Characteristics of Helical Pile in Granite Residual Soil (풍화토 지반에 관입된 나선형 강관말뚝의 거동 특성)

  • Cho, Chunhee;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.41-49
    • /
    • 2013
  • The rotate penetration pile is a type of displacement pile: the surrounding soil is displaced when installing the pile, and the pile can exert a large bearing power and pullout force. In addition, it uses displaced soil method that does not generate slime, and its applications are increasing in foreign countries owing to the environmentally friendly characteristics such as small noise and vibration. However, mostly driven piles-which are directly driven to the ground, and bored pile- pre-fabricated piles are buried to prebored underground, are used; however, rotate penetration piles still have limited use. Most of the laboratory tests have been carried out until now to identify the support behavior after installation of piles and ground construction, the evaluating the support behavior is lacking due to the rotation intrusive process of the rotate penetration piles. Therefore, this study used indoor experiments simulating rotation intrusive process in weathered soil, to evaluate the bearing power behavior for the weathered soil, varying the diameter of the helical bearing plates, helical bearing plate spacing, number of the helical bearing plates, and helical bearing plate specifications. As the outcome of this study, the helical pile bearing power evaluation results, change in bearing power in accordance with main specifications, and review on the comparative analysis with the existing theories were provided.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Two Cases of Korean Medicine Treatment for Patients with Parkinson's Disease Evaluated Using a Three-Dimensional Gait Analysis System (3차원 보행분석기로 평가한 보행장애 및 자세불안정을 주소로 하는 파킨슨병 환자 한의 치험 2례)

  • Hye-jin Lee;Ye-chae Hwang;Kyeong-hwa Lee;Dong-joo Kim;Seung-yeon Cho;Jung-mi Park;Chang-nam Ko;Seong-uk Park
    • The Journal of Internal Korean Medicine
    • /
    • v.44 no.4
    • /
    • pp.774-790
    • /
    • 2023
  • Objective: This study examined the effectiveness of Korean medicine treatments in two patients with Parkinson's disease complaining of discomfort stemming from postural instability and gait disturbance (PIGD). Methods: Two patients were treated for 3 months. They visited the clinic once a week for the first month and thereafter once every 2 weeks. The Unified Parkinson's Disease Rating Scale (UPDRS) and a three-dimensional gait analysis were performed at the first visit and at 1, 2, and 3 months thereafter. Results: In Case 1, gait speed, stride length, and swing phase increased. Double support decreased until 2 months after treatment but increased slightly after 3 months. Among the kinematic parameters, tilt and rotation increased. The total UPDRS Part III score decreased from 51 points to 29 points after 3 months of treatment. In Case 2, gait speed, stride length, and swing phase increased, but double support decreased. Among the kinematic parameters, tilt, rotation, and obliquity decreased. The total UPDRS Part III score decreased from 11 points to 7 points after 3 months of treatment. Conclusions: This study suggests that Korean medicine can be an effective treatment for patients with Parkinson's disease who experience discomfort due to PIGD.

The Effect of Tai Chi Training on the Center of Pressure Trajectory While Crossing an Obstacle in Healthy Elderly Subjects

  • Kim, Hyeong-Dong
    • Physical Therapy Korea
    • /
    • v.15 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • The purpose of this study was to investigate the changes of the center of pressure (COP) trajectory in healthy elderly subjects while crossing an obstacle before and after participation in Tai Chi training. Forty healthy elderly subjects participated either in a 12-week intervention of Tai Chi training or in a health education program. The participants were divided into two groups (the experimental group and the control group). Subsequently, the participants were pre- and post-tested on crossing over an obstacle from a quiet stance. Participants in the experimental group received Tai Chi training that emphasized the smooth integration of trunk rotation, a shift in weight bearing from bilateral to unilateral support and coordination and a gradual narrowing of the lower-extremity stance three times weekly. The participants in the control group attended a health education program one hour weekly and heard lectures about general information to promote health. Performance was assessed by recording the changes in the displacement of the COP in the anteroposterior (A-P) and mediolateral (M-L) directions using a force platform. Participants in the Tai Chi group significantly increased the A-P and M-L displacement of the COP after Tai Chi training (p<.05). No significant differences in the A-P and the M-L displacement of the COP between pre-testing and post-testing in the control group were found. This study has shown that participation in Tai Chi exercise increased the magnitude of the A-P and M-L displacement of the COP, thereby improving the ability of healthy elderly participation to generate momentum to initiate gait. These findings support the use of Tai Chi training as an effective fall-prevention program for the elderly.

  • PDF