• Title/Summary/Keyword: Support Pulley

Search Result 9, Processing Time 0.024 seconds

Seismic Performance Evaluation of Vibration Attenuation Wireway-Pulley System Using the FE Analysis (유한요소해석을 통한 진동 감쇠형 와이어웨이시스템의 내진성능 검증)

  • Tran, V. Han;Jin, Su Min;Kim, Sung Chan;Cha, Ji Hyun;Shin, Jiuk;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.185-192
    • /
    • 2020
  • A new lighting support structure composing of two-way wires and pulley, a pulley-type wireway system, was developed to improve the seismic performance of a ceiling type lighting equipment. This study verifies the seismic performance of the pulley-type wireway system using a numerical approach. A theoretical model fitted to the physical features of the newly-developed system was proposed, and it was utilized to compute a frictional coefficient between the wire and pulley sections under tension forces. The frictional coefficient was implemented to a finite element model representing the pulley-type wireway system. Using the numerical model, the seismic responses of the pulley-type wireway system were compared to those of the existing lighting support structure, a one-way wire system. The addition of the pulley component resulted in the increasement of energy absorption capacity as well as friction effect and showed in significant reduction in maximum displacement and oscillation after the peak responses. Thus, the newly-developed wireway system can minimize earthquake-induced vibration and damage on electric equipment.

Web-based Design Support System for Automotive Steel Pulley (웹 기반 자동차용 스틸 풀리 설계 지원 시스템)

  • Kim, Hyung-Jung;Lee, Kyung-Tae;Chun, Doo-Man;Ahn, Sung-Hoon;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.39-47
    • /
    • 2008
  • In this research, a web-based design support system is constructed for the design process of automotive steel pulley to gather engineering knowledge from pulley design data. In the design search module, a clustering tool for design data is proposed using K-means clustering algorithm. To obtain correlational patterns between design and FEA (Finite Element Analysis) data, a Multi-layer Back Propagation Network (MBPN) is applied. With the analyzed patterns from a number of simulation data, an estimation of minimum von mises can be provided for given design parameters of pulleys. The case study revealed fast estimation of minimum stress in the pulley within 12% error.

Web-based Design Support System for Automotive Engine Pulley (웹 기반 자동차용 엔진 풀리 설계 지원 시스템)

  • Kim H.J.;Chun D.M.;Ahn S.H.;Hwang B.C.;Jang J.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.639-640
    • /
    • 2006
  • Many companies in mechanical engineering fields have accumulated information of design and manufacturing. The Enterprise Resource Planning (ERP) and Product Data Management (PDM) systems help information gathering and data managing. However, these systems are not flexible to support suitable functionality for specific product because these systems deal with entire enterprise resources. To cope with this issue, a web-based design support system was constructed for the design process of automotive steel pulley. This system provided 1) search service for part design with key word and clustering map, and 2) estimation service of maximum stress. These services reduced design time by reducing iterative jobs with Computer Aided Design (CAD) and Computer Aided Engineering (CAE) for stress analysis, and by enhancing search for existing data of steel pulley.

  • PDF

Development of Brace-type Wearable Robot for Lumbar Stabilization (요부 안정화를 위한 복대형 입는 로봇 개발)

  • Joowan Kim;Jaehoon Sim;Keewon Kim;Sungun Chung;Jaeheung Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.189-196
    • /
    • 2023
  • An abdominal brace is a recommended treatment for patients with lumbar spinal disorders. However, due to the nature of the static brace, it uniformly compresses the lumbar region, which can weaken the lumbar muscles or create a psychological dependence that worsens the condition of the spine when worn for an extended period of time. Due to these issues, doctors limit the wearing time when prescribing it to patients. In this paper, we propose a device that can dynamically provide abdominal pressure and support according to the lumbar motion. The proposed device is a wearable robot in the form of a brace, with actuators and a driving unit mounted on the brace. To enhance wearability and reduce the weight of the device, worm gears actuator and a multi-pulley mechanism were adopted. Based on the spinal motion of the wearer measured by the Inertia measurement unit sensors, the drives wire by driving pulley, which provide tension to the multi-pulley mechanism on both sides, dynamically tightening or loosening the device. Finally, the device can dynamically provide abdominal pressure and support. We describe the hardware and system configuration of the device and demonstrate its potential through basic control experiments.

A Study on the Product Design and Prototype Manufacturing of a Plastic V-Belt Pulley (플라스틱 V-벨트 풀리 설계 및 시작품 제작에 관한 연구)

  • Son, Tae-Yil;Rim, Jae-Kyu;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.281-286
    • /
    • 2001
  • In this study, product design and prototype manufacturing of a plastic water-pump pulley has been tried. The designed model is supposed to be made of 33 % glass reinforced resin of which the tensile strength is 180 MPa, and has 24 ribs on each side to increase its structural strength. Structural analysis under a static load of 300 kgf acting on both edges of the belt has been carried out using a commercial finite element code, MARC. The analysis result showed the maximum effective stress near a rib of designed model would be at most 35 MPa (less than 20% of the tensile strength), therefore, the plastic product would be sufficiently safe under that loading condition. On the basis of the structural analysis, a prototype of the designed model has been manufactured by using the fused deposition modelling (FDM) method which is one of the rapid prototyping (RP) methods, using ABS resin and support materials. The CAD data exported to the RP system in STL format was prepared by a commercial solid modeling software, SolidWorks. It has been proved that the plastic pulley can successfully replace the existing flow-formed steel product.

  • PDF

Design and Evaluation of a Low-floor Care-bed for Elderly People (고령자용 저상 요양침대의 설계 및 평가)

  • Bae, Ju-Hwan;Moon, Inhyuk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • It was hard for a conventional care-bed to be realized to a low-floor position due to a complex actuation mechanism installed under the mattress support platform. In this paper a mechanism design to set a low-floor position as well as to adjust back- and leg-rest angles was proposed. A dual motor was applied to the back- and leg-rest mechanism of which design parameters were determined by an optimal method. An elevation mechanism was also designed to enlarge a limited stroke range up to two times of its original stroke using a pulley mechanism. An evaluation test was performed by five healthy subjects ($24.4{\pm}0.5yrs.$) when going up from a floor position to a preset best position which was set to the 240mm height for a prototype low-floor bed and to the 600mm height for a conventional bed. As a result, the moving distance was 38% lower than the conventional bed when the subject used the low-floor bed. It showed that the low-floor care-bed reduced physical burdens and was effective to assist activities of daily living of the elderly people.

Lifetime Assessment Criteria and Failure Analysis for the Clutch Coil in an Automotive Air Conditioner (자동차용 에어컨 클러치 코일의 수명평가 기준과 고장해석)

  • Choi, Man-Yeop;Wei, Shin-Hwan;Kim, Jung-Sik;Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.111-126
    • /
    • 2011
  • The clutch coil mounted on the automotive air conditioner is an important part which actuates the clutch to connect or disconnect the pulley and the compressor according to the climate control condition in an automobile. Here, it is generally required that the clutch coil should ensure the long term durability requirement, such as a warranty for the 10 years of field operation or 160,000 km driving, especially in a brand new item, and so forth. However, some difficulties have arisen in restoring its credibility, since domestic specifications for the part have not been yet unified. In order to ensure the reliability, test methods and assessment criteria should be standardized. Moreover, assessed lifetime under specific conditions and potential failure analysis would be important. In this study, lifetime test specifications for the clutch coil have been reviewed and methodological suggestions are provided to ensure reliability, utilizing a quality function deployment through the potential failure mode effect analysis.

Usability test of pulling cable exercise machine in the spinal cord injury disabled: Focusing on deriving improvement (척수 손상 장애인 대상 장애인용 풀링 케이블 운동기구의 사용성 평가: 개선점 도출을 중심으로)

  • Sung Shin Kim;Myo Jung Choi;Hyosun Kweon;Kwang Ok An;Young-Hyeon Bae
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.1
    • /
    • pp.16-32
    • /
    • 2024
  • Background: Exercise equipments and assistive devices for the disabled are being developed, but improvements for usability are still needed. The purpose of this study was to improve and utilize the developed exercise equipment and assistance devices by conducting usability test for people with spinal cord injury. Design: Cross-sectional Study. Methods: Scenarios and usability indicators were derived by conducting a preliminary usability test, 5 non-disabled men and women aged 19 or older. In the scenario, a total of 9 tasks were sequentially performed, including 2 tasks of entry and exit, 5 tasks of assistance devices and weight stack adjustment, and 2 tasks of pre exercise and exercise. The usability indicators were task success (success or fail), execution time (sec), safety, and convenience. For safety, 7 questions (Likert scale, 1~5 point) related to safety, stability and hazard were derived, and for convenience, the system usability scale (SUS score) was used (range: 0~100, 50 percentile rank is 68 point). Results: As a result of the usability test of people with spinal cord injury, there was a large variation among subjects in the task of adjusting the position of the pulley and support in the execution time (11.64~25.44 seconds), and one person failed to adjust the pulley. The safety level showed a lower score (score = 3 points) than other items in the item of entrapment or skin pressure, and in the case of SUS, the average score was 64.5 points, which was close to the acceptable level. Conclusion: Through the usability test, it was confirmed that exercise equipment for the disabled needs improvement in operability, pinching, and pressure, and that it is necessary to develop an assistive device that provides unrestrained posture information (biofeedback) to maintain correct posture during exercise.