• Title/Summary/Keyword: Supply velocity

Search Result 310, Processing Time 0.029 seconds

Experimental and Numerical Studies on Heat/Smoke Behavior due to a Fire on Underground Subway Platform (I) - Experimental Approach - (지하철 역사 승강장 화재발생시 열/연기 거동 분석을 위한 실험 및 수치 연구(I) - 실험적 접근 -)

  • Park, Won-Hee;Kim, Dong-Hyeon;Chang, Hee-Chul;Kim, Tae-Kuk
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.9-14
    • /
    • 2006
  • In this study boundary velocity which is one of the important boundary conditions for numerical simulation for subway station on fire are experimentally obtained. The tests were conducted according to its operating mode of the ventilation systems in the platform: smoke extraction ventilation mode in occurrence of fire and normal ventilation mode for air conditioning. Velocities are measured at various points on the platform. To examine smoke extraction and air supply capacity in the platform level, air velocities were checked on opening vents. Numerical analysis under normal ventilation mode without fire is conducted by using measured boundary conditions, and the numerical results are compared with the measured velocities on the platform.

The Study of the Decision Criteria for the Urgency Released Valve in Hydraulic Dam (수력댐 비상방류밸브의 선정조건에 관한 연구)

  • Roh, H.W.;Lee, G.S.;Park, Y.M.;Kim, B.S.;Lee, Y.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.613-616
    • /
    • 2005
  • In general, the hollow jet valve, the fixed cone valve had been used for the urgency released or maintenance of the flow rate. Nowadays, the butterfly valve, the gate valve are applied in economic performance and operation maintenance more than the hollow jet valve, the fixed cone valve. However, in the case of butterfly valve, it should be required the strict application standard to the cavitation coefficient because the structural axis and disk were situated in pipe channel and the occurring the shock problem by Karman Vortex. And, the judgment data for choice were slight lowdown in water supply and drainage facilities standard or Japanese penstock technology standard, various standard of KOWACO etc. Therefore. there were investigated the valve inside phenomenon (cavitation, disk chattering, vibration) by velocity of flow and the stability examination of body by high velocity of flow through flow scale model test using the numerical analysis and PIV to establish the applicable extensibility of the butterfly valve for the urgency released valve.

  • PDF

Trim Range and Characteristics of Autorotation(I): Rotor Speed Limit and Pitch Range (자동회전의 트림 범위와 특성(I): 로터 스피드 한계와 피치범위)

  • Kim, Hak-Yoon;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.487-497
    • /
    • 2011
  • Numerical analysis has been performed to investigate the rotor speed and pitch range variations when the airspeed is increased in autorotation. Transient Simulation Method(TSM) was used to obtain the steady states of autorotation. The rotor blade was analyzed by the two-dimensional compressible Navier-Stokes solver in order to adapt to the airspeed increase and the results were used in the transient simulation method. Meanwhile, the Pitt/Peters inflow theory was used to supply the induced velocity fields. For the prescribed torque equilibrium state, the combinations of velocity, shaft angle, and pitch angle were produced to investigate the rotor speeds and variable ranges. The rotor tip Mach number and rotor speed were correlated and the trim range of pitch angle was observed with respect to the shaft angle decrease.

The Study on the experimental of a development of the filtering system for particle/gas phase contaminants (입자/가스상 오염물질 필터링 장치 개발에 관한 실험적 연구)

  • Kim, Tae-Hyung;Nam, Seung-Baeg;Ha, Jong-Pil;Moon, In-Ho;Cho, In-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.387-392
    • /
    • 2007
  • In this study performance evaluation of filtering system were made on the clean air supply system to show it's ability to eliminate the air contaminants. The evaluation was conducted inside the 3,200CMH scale wind tunnel and under the same environment that is effected by yellow dust and similar particle and gas phase contaminants in semi-conductor and FPDs industries. (1) The result of experimental for particle contaminants, the particle removing efficiency was 40% on condition that the air velocity is 2.5m/s, L/G ratio : 0.05, electrified voltage : (+)5.8kV with electric charger and (-)3.5kV with eliminator. (2) The gas phase removing efficiency for $NH_3$ : 80%, $SO_X$ : 70% and $NO_X$ : 40% on condition that the air velocity is 2.5m/s, L/G ratio : 0.05.

  • PDF

Configuration Design, Hot-firing Test and Performance Evaluation of 200 N-Class GCH4/LOx Small Rocket Engine (Part II: Steady State-mode Ground Hot-firing Test) (200 N급 GCH4/LOx 소형로켓엔진의 형상설계와 성능시험평가 (Part II: 정상상태 지상연소시험))

  • Kim, Min Cheol;Kim, Young Jin;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • A performance evaluation of the 200 N-class GCH4/LOx small rocket engine was performed through ground hot-firing test. As a result, the combustion pressure and thrust raised with the increase of the oxidizer supply pressure, and thus the specific impulse, characteristic velocity, and their efficiency increased. The characteristic velocity was measured at about 90% performance efficiency. The change of chamber aspect ratio did not affect the performance of the rocket engine in the test condition specified. In addition, uncertainty evaluation was conducted to ensure the reliability of the test results.

Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine

  • Tian, Wenlong;Mao, Zhaoyong;Ding, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.782-793
    • /
    • 2018
  • A small-scale horizontal axis hydrokinetic turbine is designed, manufactured and studied both experimentally and numerically in this study. The turbine is expected to work in most of China's sea areas where the ocean current velocity is low and to supply electricity for remote islands. To improve the efficiency of the turbine at low flow velocities, a magnetic coupling is used for the non-contacting transmission of the rotor torque. A prototype is manufactured and tested in a towing tank. The experimental results show that the turbine is characterized by a cut-in velocity of 0.25 m/s and a maximum power coefficient of 0.33, proving the feasibility of using magnetic couplings to reduce the resistive torque in the transmission parts. Three dimensional Computational Fluid Dynamics (CFD) simulations, which are based on the Reynolds Averaged Navier-Stokes (RANS) equations, are then performed to evaluate the performance of the rotor both at transient and steady state.

The Way of Determinating the Optimal Parameters of the Propellant Tank Pressurization Gas in the Feeding System for Liquid Rocket Engine (액체로켓 추진기관의 추진제탱크 가압시스템 최적변수 설계 방법)

  • Bershadskiy V.A.;Cho Kie-Joo;Lim Seok-Hee;Jung Young-Suk;Cho Gyu-Sik;Oh Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The design method to calculate the main features of propellant tank pressurization system during the development procedure of propellant feed system of the liquid rocket engine was suggested. We have considered the influences of parameters of pressurization gas on the efficiency of the thermodynamic processes in the tank. The optimum value of temperature and velocity of pressurization gas at the entrance of tank are obtained by the suggested way.

Classification of algae in watersheds using elastic shape

  • Tae-Young Heo;Jaehoon Kim;Min Ho Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.309-322
    • /
    • 2024
  • Identifying algae in water is important for managing algal blooms which have great impact on drinking water supply systems. There have been various microscopic approaches developed for algae classification. Many of them are based on the morphological features of algae. However, there have seldom been mathematical frameworks for comparing the shape of algae, represented as a planar continuous curve obtained from an image. In this work, we describe a recent framework for computing shape distance between two different algae based on the elastic metric and a novel functional representation called the square root velocity function (SRVF). We further introduce statistical procedures for multiple shapes of algae including computing the sample mean, the sample covariance, and performing the principal component analysis (PCA). Based on the shape distance, we classify six algal species in watersheds experiencing algal blooms, including three cyanobacteria (Microcystis, Oscillatoria, and Anabaena), two diatoms (Fragilaria and Synedra), and one green algae (Pediastrum). We provide and compare the classification performance of various distance-based and model-based methods. We additionally compare elastic shape distance to non-elastic distance using the nearest neighbor classifiers.

Study for Flow Phenomenon in the Circulation Water Pump Chamber using the Flow-3D Model (Flow-3D 모형을 이용한 순환수취수펌프장 내 흐름현상 연구)

  • Ha, Sung-Won;Kim, Tae-Won;Choi, Joo-Hwan;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.580-589
    • /
    • 2019
  • Indonesia has a very short supply of electricity. As a solution to this problem, plans for construction of thermal power plants are increasing. Thermal power plant require the cooling water system to cool the overheated engine and equipment that accompany power generation, and the circulation water pump chamber among the cooling water system are generally designed according to the ANSI (1998) standard. In this study, the design criterion $20^{\circ}$ for the spreading angle of the ANSI (1998) of the layout of the circulating water pump chamber can not be satisfied on the K-coal thermal power plant site condition in Indonesia. Therefore, 3-D numerical model experiment was carried out to obtain a hydraulically stable flow and stable structure. The Flow-3D model was used as numerical model. In order to examine the applicability of the Flow-3D model, the flow study results around the rectangular structure of Rodi (1997) and the numerical analysis results were compared around the rectangular structures. The longitudinal velocity distribution derived from numerical analysis show good agreement. In order to satisfy the design velocity in the circulating water pump chamber, a rectangular baffle favoring velocity reduction was applied. When the approach velocity into the circulating water pump chamber was occurred 1.5 m/s ~ 2.5 m/s, the angle of the separation flow on the baffle was occurred about $15^{\circ}{\sim}20^{\circ}$. By placing the baffle below the separation flow angle downstream, the design velocity of less than 0.5 m/s was satisfied at inlet bay.

Study on Indoor Flow According to Vane Angle of Square Ceiling Type Louver Diffuser (사각 천장형 루버 디퓨저의 토출 각도에 따른 실내유동에 관한 연구)

  • Jang, Heon-Deock;Lee, Dae-Hui;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.683-687
    • /
    • 2012
  • The purpose of this paper is to numerically study the characteristics of the indoor air flow of a square ceiling type diffuser according to the vane angle and flow rate. The CFX of ANSYS 13.0 was used for the CFD tool. The size of the room is $6m(X){\times}6m(Y){\times}2.7m(Z)$. The exhaust diffuser was positioned diagonally to the supply diffuser. This diffuser was designed to have many holes, so the air supply had long throw patterns with low velocity decay. The characteristics of the indoor air flow was studied at volume flow rates of 5.1 CMM and 7.4 CMM, and a vane angle from $30^{\circ}$ to $60^{\circ}$, every $10^{\circ}$.