• Title/Summary/Keyword: Supply air velocity

Search Result 124, Processing Time 0.02 seconds

A Study on the Improvement Strategies for Exhaust Performance in Commercial Kitchen Hoods (상업용 주방후드의 배기성능 개선방안에 관한 연구)

  • 박진철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.439-445
    • /
    • 2003
  • The purpose of this study is to suggest the improvement strategies for exhaust performance in composite kitchen hoods. The Exhaust only hood, the 2-way compensating hood and the 3-way compensating hood were selected, and the laboratory experiments were performed to compare the local exhaust efficiency and the indoor temperature distributions according to the variations of the hood type and supply/exhaust air velocity. The results of this study can be summarized as follows. The compensating hood has better performance than exhaust only hood in the aspect of local exhaust efficiency and temperature distribution. The 3-way compensating hood shows the best performance when the supply air velocity is about 2.7 m/s, and the 2-way compensating hood at the supply air velocity of 3.5 w/s. In the same exhaust rate condition, if the exhaust area of the hood is increased and therefore the exhaust velocity is lowered, the supply air velocity is also lowered to get the optimum performance. The optimum exhaust velocity range of the commercial kitchen hood which derived from this study is 0.48 ∼ 0.55 m/s.

A Study on the Variation of Airflow Velocity and Temperature upon the Design of Bio Clean Room(BCR) for Laboratory Animal Facilities by Numerical Simulation (실험동물 사육실용 바이오 크린룸(BCR)의 급기 온도 및 풍속 변화 특성에 관한 수치해석적 연구)

  • Park, Dong-Il;Chung, Kwang-Seop;Kim, Young-Il;Kim, Sung-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.7
    • /
    • pp.578-584
    • /
    • 2012
  • In this study, the analysis on the distribution of indoor airflow velocity and temperature by using numerical simulation has carried out to make fundamental data for establishing the optimum design of laboratory animal facilities. From the results, it was found that replacement of cage lacks, air supply and exhaust system, supply air temperature, supply air velocity affect to the optimum design of laboratory animal facilities as a important element.

Numerical Study on Air Egress Velocity of Ancillary Room Pressurization Systems in Apartment Fires (공동주택 화재 시 부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구)

  • Kim, Byeongjun;Yang, Ying;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.78-86
    • /
    • 2020
  • In this study, numerical simulations were performed on the air egress velocity of pressurization systems in an ancillary room when a fire occurred in an apartment house. The relationship between the air supply flow rate of a damper and air egress velocity at a fire door is predicted to be linear. Additionally, a minimum flow rate of the damper, which meets national fire safety standards for air egress velocity, i.e., 0.7 m/s can be estimated. Air egress velocity at the fire door is analyzed according to the supply air direction and installation height of the damper. When the damper has an upward supply air direction and is installed at a high level, the egress velocity at the top section of the fire door is larger, whereas the soot concentration at the ancillary room is lower than when the supply direction of the damper is downward. Therefore, it is found that increasing the air egress velocity at the top section of the fire door helps to efficiently prevent the inflow of smoke.

The Analysis on the Effect of Supply Air Velocities by Location of Supply Air Damper on the Performance Efficiency of the Smoke Exhaust Systems (공기유입구 위치에 따른 유입공기의 풍속이 배연시스템 성능효율에 미치는 영향 연구)

  • Yeo, Yong-Ju;Lim, Chae-Hyun;Kim, Hak-Jung;Kim, Bum-Gyu;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.20-27
    • /
    • 2010
  • In smoke control systems the amount of air supply is almost the same as that of smoke exhaust. This study analyzed the effect of supply air velocity on the smoke exhaust behavior using FDS tool. The results showed that fire plume can be disheveled by the rapid air velocities developed when the air supply inlet is located near the fire plume. Disheveled smoke caused the rapid descent of smoke layer level and the reduced visibility. To increase the efficiency of smoke exhaust systems supply air inlet should be located sufficiently far from the location of the fire plume.

Experimental Analysis of Thermal Comfort of an Office Space for Ceiling and Floor Supply Air Conditioning Systems (사무실 공간의 냉방시 천장 및 바닥 급기 공조 방식에 따른 열환경 평가 실험)

  • Cho, Yong;Kwon, Hyurk-Seung;Kim, Sung-Hyun;Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.810-816
    • /
    • 2000
  • Thermal comfort plays an important role in modern office buildings. Four major factors affecting thermal comfort are air temperature, velocity, humidity and radiation temperature. Distribution of these thermal factors in indoor space depends largely on the air flow which is related to the method of supplying and extracting air. In this study, an experimental analysis on indoor thermal comfort is conducted to study the difference between a ceiling supply cooling system and a floor supply one. The two cooling systems are applied to an office space during summer season and the distributions of temperature, velocity, radiation temperature and PMV are measured. Results show that the floor supply cooling system is superior in terms of thermal comfort and energy saving. Studies need to be done, however, to reduce the vertical temperature difference of a floor supply air conditioning system.

  • PDF

Effect of supply air temperature and airflow rate on ventilation effectiveness in an underfloor air conditioning space (바닥취출 공조공간에서 급기온도 및 급기풍속이 환기효율에 미치는 영향)

  • 정광섭;한화택;홍승재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.640-648
    • /
    • 1998
  • A numerical study has been conducted to investigate the effect of inflow supply air temperature and velocity on ventilation effectiveness in an underfloor air conditioning space. A low Reynolds number k-$\varepsilon$ model is implemented to calculate steady state turbulent velocity distributions. A step-down injection method is used to calculate local and room mean ages from transient concentrations based on the concept of the age of air. Results show that there is a significant effect of Archimedes number on ventilation effectiveness especially for cooling conditions. Reynolds number shows relatively minor effect on velocity distribution and ventilation effectiveness especially for isothermal and heating conditions. It can be concluded that underfloor air conditioning system provides good ventilation characteristics for cooling conditions because of temperature stratification in the space.

  • PDF

The Characteristics of Indoor Temperature and Airflow Distribution for Air Supply and Return System in Dome Stadium (돔경기장의 급배기방식에 따른 기류분포 및 실내온도 특성)

  • Chae, Mun-Byoung;Yang, Jeong-Hoon;Seok, Ho-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.434-439
    • /
    • 2008
  • Dome stadiums give thermal unpleasant feeling to occupants because of the radiant heat and the indoor and outdoor haet exchange from roogs or lightweight building envelopes of sidewalls. This study analyzed the indoor temperature and velocity distribution according to various air supply and return sustems in dome stadiums in summer.

  • PDF

FLOW ANALYSIS OF THE ON-BOARD SYSTEM FOR THE AIR SUPPLY TO THE PAYLOAD FAIRING OF A LAUNCH VEHICLE (발사체 탑재물 페어링 내부 공기 공급을 위한 탑재 시스템 유동 해석)

  • Ok H.;Kim Y.;Kim I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.269-273
    • /
    • 2005
  • The on-board system for the air supply to the payload fairing(PLF) of a launch vehicle using both high and low pressure air was designed. The design concept was obtained from the CFD analysis of a Russian interstage air supply system, and a collector was adopted to expand the high pressure air. To verify that the on-board system would work as designed, a simplified axisymmetric computational model was made and a CFD analysis was also performed. It was found that the flow ejected from the hole of the collector expands to the Mach number of 4 and is soon retarded due to the action of viscosity. It was also found that a small gap between the low pressure duct and equipment bay wall can cause large velocity in PLF over the velocity requirement and no gap should be allowed in the design.

  • PDF

An Experimental Study on Understanding of Production Mechanism of a Mist from Fin Adhesion heat Exchanger (핀 부착 열교환기에서 습증기(mist)발생 메커니즘의 파악을 위한 실험적 고찰)

  • 최권삼
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.146-152
    • /
    • 2000
  • As an improvement in the standard of living and economic growth the demand for air conditioning equipment is increasing rapidly. Nowadays air conditioning equipments are being used for industry large building house and car. Thess equipments was concentrated on improving heat efficiency of economic aspects while they design heat exchanger for cooling and heating,. These air conditioning equipments using heat exchanger cause a discomfort to user due to generating mist at the beginning of operating. Therefore the user demand air of high class and quality. In this experimental study to acquire elementary data for development of heat exchanger which be able to supply air of high quality that is to say possess a restraint effect of mist generation. We estimate an effect on cooling plate kind supply air velocity supply air temperature cooled plate temperature and supply air relative humidity which have an influence on outlet air condition of heat exchanger.

  • PDF

Evaluation of Thermal Performance for Air-Barrier Air-conditioning System in Perimeter Zone by Scale Model Experiment and Simulation (모델실험 및 수치해석을 통한 페리미터존 에어배리어 공조방식웨 열성능 평가)

  • Ham Heung-Don;Park Byung-Yoon;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.947-955
    • /
    • 2005
  • For the purpose of evaluating the thermal performance for air-barrier air conditioning system in perimeter zone, two air-conditioning systems, conventional perimeter air-conditioning system and air-barrier system, are evaluated and compared by scale model experiment and simulation during cooling season. As a result, measurement shows that supply air velocity of 1 m/s in the upstream direction at perimeter is more effective. Air-barrier system could reduce the cooling energy by $10\sim20\%$ compared with conventional system. Numerical simulation was carried out considering solar effect for reliable result. This method has improved the accuracy of numerical simulation for the space affected by the solar radiation. Both measurement and simulation results show that supply air velocity of 1 m/s at perimeter is the most effective.