• 제목/요약/키워드: Supply air inlet

검색결과 77건 처리시간 0.026초

공기유입구 위치에 따른 유입공기의 풍속이 배연시스템 성능효율에 미치는 영향 연구 (The Analysis on the Effect of Supply Air Velocities by Location of Supply Air Damper on the Performance Efficiency of the Smoke Exhaust Systems)

  • 여용주;임채현;김학중;김범규;박용환
    • 한국화재소방학회논문지
    • /
    • 제24권6호
    • /
    • pp.20-27
    • /
    • 2010
  • 배연설비는 연기를 배출한 만큼 공기가 유입되도록 계획된다. 이때 유입공기의 속도가 배연에 어떠한 영향을 미치는지를 FDS를 통하여 분석하였다. 그 결과 화재의 위치로부터 급기구가 가까이 설치된 경우 화재 플럼으로 유입되는 기류속도가 빨라져 상승하는 화재 플럼을 흩트려 버리는 현상이 일어남을 발견하였다. 그로인해 배연성능이 저하되어 연기층의 강하가 더욱 빠르게 촉진되었으며 흐트러진 화재 플럼은 연기층을 교란시켜 가시거리를 더욱 나쁘게 하였다. 따라서 공기유입구의 위치는 화재의 위치로부터 충분히 이격된 위치에 설치하여 화재 플럼으로의 유입공기속도를 낮추도록 하여야 배연효율이 좋아진다는 것을 확인하였다.

다중 급기구를 갖는 실내공간에서의 공기연령 산정방법에 관한 연구 (Estimation of Local Mean Ages of Air in a Room with Multiple Inlets)

  • 한화택;신철용;이인복;권경석;권용일
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.148-153
    • /
    • 2009
  • This paper considers the age of air in a ventilated space with multiple supply inlets. The local mean age of air at a point from one supply inlet is different from those from the other supply inlets. It is the purpose of the present paper to investigate theoretically the relations between the LMA's from each supply and overall combined LMA whether or not to trace the origins of supply air. Transient concentration distributions are calculated with a step-up injection of tracer gas at each supply inlet, and at both inlets simultaneously. The steady state concentration with a continuous tracer injection at a supply inlet works as a weighting factor for the corresponding LMA in calculating the average overall LMA from multiple inlets.

  • PDF

격리병실내 급배기구 위치에 따른 오염물 제거효율 비교 (Comparison of pollutant removal efficiency according to the locations of the supply and exhaust)

  • 원안나
    • 도시과학
    • /
    • 제9권2호
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.

액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구 (Investigation of Icing Phenomenon in Liquid Phase LPG Injection System)

  • 김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF

급배기 위치에 따른 바닥급기 공조시스템의 냉방 열환경 (Thermal Comfort of the Floor Supply Air Conditioning System for Different Supply-return Locations during Cooling)

  • 김요셉;김영일;유호선
    • 설비공학논문집
    • /
    • 제12권5호
    • /
    • pp.476-485
    • /
    • 2000
  • This study numerically investigates thermal comfort in a space cooled by the floor-supply air conditioning system, in which three different supply-return locations, one floor supply-ceiling return and two floor supply-floor returns, are treated. A complementary experiment is peformed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through the diffuser is developed for efficient simulations. The calculated results show that the ceiling return type is far better in thermal comfort than the floor return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor supply-floor return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present estimation.

  • PDF

EFFECT OF TURBULENCE AT INLET BOUNDARY ON AIR MOVEMENT IN A ROOM

  • Lee, Heekwan;Hazim B. Awbi
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2000년도 춘계학술대회 논문집
    • /
    • pp.162-164
    • /
    • 2000
  • The numerical simulation of air movement in a room using CFD (Computational Fluid Dynamics) requires a complicated set of input data, This includes physical data, such as space geometry, characteristics of supply air flow and contaminant source, etc. as well as computational domain. Among the input data, the boundary conditions related to the inlet are particularly crucial in order to achieve accurate computation results, although there are many other parameters which may also affect the results. (omitted)

  • PDF

대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구 (Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine)

  • 김창업;오승묵;강건용
    • 한국분무공학회지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

가열 공기 유입에 따른 복합형 태양열 가열기 공기-물 제조 성능에 관한 연구 (Performance Evaluation of Hybrid Solar Air-Water Heater when the Heated Air is used as Inlet Air during Air and Water is Heated Simultaneously)

  • 최휘웅;윤정인;손창효;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the performance of hybrid solar air-water heater when the heated air was used as inlet air was investigated during air and liquid were heated simultaneously. Temperature difference between inlet air and ambient was set as $0^{\circ}C$, $13^{\circ}C$ and $22^{\circ}C$ and it was maintained during the daily operation. As a result, thermal efficiency of liquid heating was increased when the inlet air temperature was increased and heat gain of the water in heat storage tank was also increased with increment of temperature difference between inlet air and ambient temperature. On the contrary to this, the decrement of air heating efficiency and total efficiency of collector was confirmed with increment of inlet air temperature and it is considered that heat gain of liquid side is lower than heat loss of air side that occurring by using heated air as inlet air of collector. So, from these results, maximum temperature that the liquid in heat storage tank can reach was expected to increase if the return air or any heated air was used as inlet air. But air and total efficiency of hybrid solar air-water is decreased, so using outdoor air as inlet air is considered as better way on perspective of using of solar thermal energy by hybrid solar collector. However, it is hard to conclude that using outdoor air is better than heated air on the perspective of energy saving of building because the performance of heat storage performance was increased even air and total thermal efficiency was decreased, so the necessity of more profound consideration about these result in further research was confirmed for putting the hybrid solar air-water heater to practical use.

수평형 재생증발식 냉방기의 성능시험 (Performance Test for a Horizontal Regenerative Evaporative Cooler)

  • 송귀은;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

Effect of Supply and Return Locations of a Floor-Supply Cooling System on Thermal Comfort

  • Kim, Young-Il;Kim, Jo-Seph;Yoo, Ho-Seon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.37-46
    • /
    • 2001
  • This study numerically investigates thermal comfort of a space cooled by a floor-supply air-conditioning system, in which three different combinations of supply and return locations, one floor-supply/ceiling-return and two floor-supply/floor-return, are treated. A complementary experiment is performed to validate the present numerical analysis, and the prediction agrees favorably with the measured data. In the numerical procedure, a simplified model mimicking the inlet flow through a diffuser is developed for efficient simulations. The calculated results show that the ceiling-return type is far better in terms of thermal comfort than the floor-return ones within the extent of this study, which seems to be caused by effective vertical penetration of the supply air against natural convection. It is also revealed that the arrangement of port locations in the floor-supply/floor-return system has insignificant effect on the cooling performance. For selecting a proper system, other characteristics including the heating performance should be accounted for simultaneously with the present considerations.

  • PDF