• Title/Summary/Keyword: Supply Curve Competition

Search Result 3, Processing Time 0.016 seconds

Analysis on Market Power in Power Transaction with Transmission Constraints (송전선 제약조건에 따른 전력거래에서의 시장지배력 연구)

  • Lee, Gwang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.403-408
    • /
    • 2002
  • As the electricity industry undergoes a process of fundamental restructuring, horizontal market power appears as a potential obstacle to a fully competitive wholesale electricity market. Market power is the ability profitably to maintain prices above competitive levels by restricting output below competitive levels. In models for imperfect competition under the consideration of the transmission constraints, the Nash equilibrium has the form of a mixed strategy. In this paper, the models for analyzing imperfect competition are compared using the solution of pure and mixed equilibria. The relation between market power and the capacity of a transmission line is investigated by imperfect competition analysis methods: Cournot, Bertrand, and Supply Curve model.

Integrated Demand and Production Control for the Competition-based Component and Cooperation-based End Item (경쟁 기반의 부품 생산과 협업 기반의 완성품 생산 시스템에서 생산과 수요 통제의 통합적 고찰)

  • Kim, Eun-Gab
    • IE interfaces
    • /
    • v.22 no.4
    • /
    • pp.368-375
    • /
    • 2009
  • This paper considers a two-stage supply system consisting of two make-to-stock facilities. The facility in the first stage produces a single type of component in anticipation of future demands from the market and the end item production while the facility in the second stage produces the end item in anticipation of future demands from the OEM customers. The facility in the first stage has the option of to accept or reject each incoming demand from the market. In this paper, we address the problem of how to control the exogenous component demand and how to manage the production of the end item and the component so as to maximize the system's profit subject to the system costs. In this paper, we present a heuristic policy that is the base-stock production policy combined with a linear switching curve for component demand control. Numerical study is implemented under different operating conditions of the system and it shows that the performance of the heuristic is very promising compared to that of the optimal policy for the Markov model.

Battery Discharge System Configuration using Photovoltaic Simulator and PCS (태양광 시뮬레이터와 PCS를 이용한 배터리 방전시스템 구성)

  • Jeong, Da-Woom;Park, Sung-Min;Park, Seong-Mi;Park, Sung-Jun;Moon, Seung-Pil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.491-498
    • /
    • 2020
  • Recently, In the production line of batteries, charge and discharge tests are essential to verify battery characteristics. In this case, the battery charging uses a unidirectional AC/DC converter capable of output voltage and current control, and the discharge uses a resistive load. Since this method consumes energy during discharge, it must be replaced with a bi-directional AC/DC converter system capable of charging and discharging. Although it is difficult to replace the connected inverter part of the bi-directional AC/DC converter system due to the high cost, the spread of the solar-connected inverter rapidly increases as the current solar supply business is activated, and thereby the solar-connected type Inverter prices are plunging. If it can be used as a power converter for battery discharge without program modification of the solar-powered inverter, it will have competition. In this paper, propose a new battery discharge system using a combination of a photovoltaic DC/DC simulator and photovoltaic PCS using a battery to be used as a power converter for battery discharge without program modification of a low-cost photovoltaic inverter. In addition, propose an optimal solar characteristic curve for the stable operation of PCS. The validity of the proposed system was verified using a 500[W] class solar DC/DC simulator and a solar PCS prototype.