• Title/Summary/Keyword: Supination

Search Result 103, Processing Time 0.028 seconds

Electromyography Triggered Training System for Wrist Rehabilitation (근전도 트리거 손목 재활 훈련 시스템 개발)

  • Kim, Younghoon;Le, DuyKhoa;Chee, Youngjoon;Ahn, Kyoungkwan;Hwang, Changho
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.148-155
    • /
    • 2013
  • This study is about the development of the wrist rehabilitation system for the patient who has limited capability of movement after stroke. Electromyography triggered training system (ETTS) can play the role between complete passive training and patient activating training system. Surface EMG was measured on pronator teres muscle and biceps brachii muscle for wrist pronation and supination. Our system detects whether the subject makes muscular effort for pronation or supination or nothing in every 50 ms. When the effort level exceeds the preset percentage of maximal voluntary contraction, the motor rotates according to the direction of the intention of the subject. EMG triggers the motor rotation for the wrist rehabilitation training until the preset angle. To evaluate its performance, the maximum voluntary contraction level was measured for 4 subjects at first. With the audio-visual instruction to rotate the wrist (pronation or supination) the subjects made effort to follow the instruction. After calculating root mean square (RMS) for 50 ms, the controller determines whether there was muscular effort to rotate while holding the motor. When there was an effort to rotate, the controller rotates the motor 0.8 degree. By comparing the RMS values from two channels of EMG, the controller determines the rotational direction. The onset delay is $0.76{\pm}0.24$ s and offset delay is $0.65{\pm}0.22$ s for pronation. For supination the onset delay is $1.24{\pm}0.41$ s and offset delay is $0.77{\pm}0.22$ s. The system responded fast enough to be used for rehabilitation training. The controller perceived the direction of rotation 100% correctly for the pronation and 97.5% correctly for supination. ETTS was developed and the fundamental functions were validated for normal subjects. The clinical validation should be done with patients for real world application. With ETTS, the subjects can train voluntarily over the limitation of the range of motion which increases the effectiveness of the rehabilitation training.

The Differences in Foot Type According to Major in Left and Right Foot for Female College Students (전공과 좌우 양 발에 따른 여대생의 발 유형 분석)

  • Yi, Kyung-Ock;Kim, Nam-Hee;Kim, You-Ryun
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.229-236
    • /
    • 2012
  • The purpose of this study is to analyze the differences in foot type of female college students according to academic major in both feet. The subjects for this study were 216 female students who took liberal arts classes in Seoul. Dependent variables were students' field of study -specifically whether or not they majored in physical education. Analysis of students' foot type and Malalignment Syndrome were measured using Resting Calcaneous Stance Position (RCSP). There were five categories for RCSP angle: Severe Pes Planus (< $-5^{\circ}$), Pes Planus ($-3^{\circ}{\sim}-4^{\circ}$), Pes Rectus (${\pm}2^{\circ}$), Pes Cavus ($+3^{\circ}{\sim}+4^{\circ}$), Severe Pes Cavus (> $+5^{\circ}$). ${\chi}^2$ analysis was used for statistical analysis. RCSP for all subjects (432 feet) occurred at the following frequency: Pes Planus(43.9%), Pes Rectus(43.8%), and Pes Cavus(12.3%). These levels were different for physical education majors, with Pes Planus at 42.6%, Pes Rectus at 49.4%, and Pes Cavusat 8.0%. Non-physical education majors exhibited Pes Planus at 45.0%, Pes Rectus at 39.9%, and Pes Cavus at 15.1%. 15.3% (33 subjects) of all students had Malalignment Syndrome. In conclusion, 56.2% of female college students had a foot deformity. There was nearly four times more Pes Planus than Pes Cavus. According to these results, exercise can be prescribed to alleviate foot deformities, especially supination. Severe pronation and supination problems appeared less amongst students not majoring in physical education. Thus, although exercise might be one cause of foot deformity, it can also help resolve problems with over-supination. Further study will be needed to understand and resolve the specific mechanism of over-supination.

Motion Change of the Trunk and Upper Extremity Segment to Putting the Wrist Support on Throwing in Bowling (볼링 투구 동작 시 손목 지지대 착용에 따른 몸통과 상지 분절의 움직임 변화)

  • Kim, Tae-Sam;Lee, Hoon-Pyo;Han, Hee-Chang
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.33-41
    • /
    • 2006
  • This study was to analysis three dimension angle of the upper extremity segment and trunk to putting the protector in women bowlers. For this study, the subjects selected 4 players of national and university team. All subjects putted in the same wrist support to satisfy the experiment conditions. To get three dimensions position coordination of swing motion used for 6 ProReflex MCU 240 camera produced by Qualisys. After position coordination calculation, Three dimension angle of the trunk and the upper extremity segment calculated for Matlab 6.5. the result is following; In the trunk motion, there were little differences among the subjects in a flexion and extension change. There were a lot of differences in motion change of the abduction-adduction and internal-external rotation, but the motion types translated to the adduction-abduction-adduction and from the internal rotation toward the external rotation. In the upper arm segment the Flexion and extension showed a consistent motion in the down swing and up swing phase. And the motion change of abduction-adduction and pronation-supination showed a abduction-adduction-abduction and pronation-supination change during swing phase. In the forearm segment changes, it showed a lot of differences among the subjects and a similar change with the upper arm segment. Especially, the hand segment showed a supination motion from the backswing apex to release phase, but for increasing a rotation velocity of ball, the hand segment translated toward pronation in follow throw phase.

Modified Scarf Osteotomy for Hallux Valgus with Lesser Metatarsalgia (소족지 중족골통을 동반한 무지 외반증에서의 변형 스카프 절골술)

  • Chung, Jin-Wha;Jung, Hyun-Woo;Chu, In-Tak
    • Journal of Korean Foot and Ankle Society
    • /
    • v.12 no.2
    • /
    • pp.134-139
    • /
    • 2008
  • Purpose: The purpose of this study was to evaluate the radiological and clinical results of modified scarf osteotomy for hallux valgus with lesser metatarsalgia. Materials and Methods: Total 19 patients (24 feet) were reviewed by medical records and radiographs. All patients were female and the mean age at the time of operation was 46.4 years. The mean follow-up time was 14.8 months. We modified original scarf osteotomy by adding the procedure of closing wedge osteotomy at the medial side of distal fragment for achieving of the supination of the first metatarsal head. Additionally, Akin osteotomy of the first proximal phalanx was done in 16 patients (20 feet) and no lesser metatarsal operation was done. First-second intermetatarsal, hallux valgus and distal metatarsal articular angles were analyzed radiologically before and after the operation. And 3-dimensional CT was used to evaluate the supination of the first metatarsal head. Clinical results were assessed by American Orthopaedic Foot and Ankle Society (AOFAS) score and persistence of lesser metatarsalgia. Results: First-second intermetatarsal and hallux valgus angles were reduced from the mean pre-operative values of $14.2^{\circ}$ and $32.5^{\circ}$ to $8^{\circ}$ and $12.5^{\circ}$, respectively, 12 months after the operation. And the supination of the first metatarsal head was confirmed by 3-dimensional CT. The mean AOFAS score improved from 41.4 points pre-operatively to 87.2 points at follow-up. Lesser metatarsalgia still remained in 2 patients (2 feet). Conclusion: Modified scarf osteotomy would be an effective surgical procedure, especially, for achieving downward displacement and supination of the first metatarsal head in hallux valgus with lesser metatarsalgia.

  • PDF

Measurement of the CTA and Q-Angle with the Different Position of the Pronation and Supination of the Foot (발의 회내 $\cdot$ 회외 변화에 따른 슬개대퇴골각과 종경골각 측정)

  • Lee Sang-yong;Kim Han-soo;Bae Sung-soo
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.342-366
    • /
    • 2002
  • An excessive Q-angle has been implicated in the development of knee injuries by altering the lower-extremity locomotion kinematics. The purpose of this study was measured the Q-angle and the CTA when the foot moves pronation and supination of the foot in the standing status. The participants of this examination were 60 adult(30 men and 30 women) who had no orthopaedic and neurological impairment, aged between 20 and 40years. The foot tilt(FT 1)is made of acrylic plate and the slope of the suface is altered as $0^{\circ}$, pronation ($10^{\circ},20^{\circ},30^{\circ}$)and supination($10^{\circ},20^{\circ},30^{\circ}$). The results were as follows : 1. The result about the left/right Q-angle and the left/right CAT There was no statistical significant difference between the left and the right side of the Q-angle with different position of the foot(P > 0.05). While significant difference in the left CTA at the $0^{\circ}$, pronation($10^{\circ},20^{\circ},30^{\circ}$) and supination($10^{\circ},20^{\circ}$) has been observed(P < 0.05). 2. The result about the Q-angle and the CTA between male and female There was significant difference in the Q-angle between male and female with different position of the foot(P < 0.05). while significant different in the right CTA at the $0^{\circ}$ pronation ($20^{\circ}$)(P < 0.05), no significant difference in the left CTA have been observed(P > 0.05). 3. The result about correlation between the left/right Q-angle and the left/right CAT There was statistical significant positive correlation between the left/right Q-angle and the left/right CAT with the different position of the foot(P < 0.01).

  • PDF

The Reliability of Kinematic Analysis for Distal Upper Extremity in Normal Person (정상인의 상지 원위부에 대한 운동학적 분석의 신뢰도)

  • Byun, Jae-Hyun;Hong, Wan-Ki
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • Purpose: To evaluate statistical differences among three measurements of range of motion (ROM) with Rapael Smart Glove (RSG) group 1, 2 and manual goniometer group. To investigate reference value of the kinematic analysis for range of motion (ROM) of distal upper extremity with Rapael Smart Glove (RSG). Methods: Sixteen normal persons without limitation of motion (LOM) enrolled in the study. The study was performed at two separate times and by two investigators on 16 normal adults. We compared ROM with RSG for measuring joint angles. We compared degrees of forearm supination/pronation, wrist flexion/extension and radial deviation/ulnar deviation during ROM of 16 participants using RSG. After one week, degrees of each motion were measured in the same way by other investigator to evaluate the reliability. Results: Statistical differences among three groups were showed. Most results of paired t-test between two RSG groups were over 0.05 and exceptions are supination, extension, and finger %. Conclusion: Our findings demonstrate that ROM of normal persons obtained by kinematic analysis with RSG are not valid as normal reference value for distal upper extremity motion. But, the reliability of between two RSG groups was showed with paired t-test and Pearson's correlation except supination, extension and finger %.

Development of Soft Wearable Robot for Assisting Supination and Pronation of Forearm (전완의 회외 및 회내를 보조하는 유연한 착용형 로봇 개발)

  • Kyu Bum Kim;Jihun Park;Kyu-Jin Cho
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.359-366
    • /
    • 2023
  • In order to fully utilize the functions of the hand which is the end effector of the upper limb, other parts of the upper limb have to perform their own roles. Among them, the pronation and supination of the forearm, which allows the hand to rotate along the longitudinal direction of the forearm, play an important role in activities of daily living. In this paper, a soft wearable robot that assists the pronation and supination of the forearm for individuals with weakened or lost upper limb function is proposed. The wearable robot consists of an anchoring part with polymer (wrist strap, elbow strap), a tendon with a belt and wire, and an actuation module. It was developed based on the requirements with respect to friction of anchoring part, forearm compression, and friction of the tendon. It was confirmed that these requirements were satisfied through literature review and experiments. Since all components exist within the forearm when worn, it is expected to be easy to combine with the already developed soft wearable robots for the hand, wrist, elbow, and shoulder.

Effects of Combinational Posture of Shoulder, Elbow and Wrist on Grip Strength and Muscle Activity (어깨, 팔꿈치, 손목의 자세에 따른 최대악력과 근육활동에 관한 연구)

  • Kim, Tae Hyung;Jung, Seung Rae;Kang, Sung Sik;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.111-119
    • /
    • 2016
  • This study aimed to analyze postures that were frequently conducted in manufacturing industry. To find grip strength and muscle activities of each posture, Maximum Voluntary Contraction (MVC) and ElectroMyoGraphy (EMG) were measured. Based on the results of this study, the most appropriate posture could be suggested and used as a basic information for preventing musculoskeletal disorders. Most work-related musculoskeletal disorders have been occurred in the fields of manufacturing industry. According to previous studies, it was reported that the rate of musculoskeletal diseases of upper extremity was higher than that of other body parts. Accordingly, there were many studies about discomfort and grip strength of upper extremity. However, these studies dealt with single selection of wrist, elbow and shoulder. So, it was insufficient for comprehensive studies about upper extremity. And in order to improve the work posture, the physiological changes being generated by the combination of wrist, elbow and shoulder postures should be observed and analyzed. In order to conduct this study, thirty university students who had no records of MSDs involved were recruited. Independent variables were postures of wrist(pronation, neutral, supination), postures of elbow(flexion $45^{\circ}$, $90^{\circ}$) and postures of shoulder(flexion $0^{\circ}$, $90^{\circ}$). And dependent variables were MVC values and EMG values. Jamar dynamometer and TeleMyo 2400T G2 was used to measure MVC and EMG. MVC and EMG for 12 postures were measured for three second and for three times. Experiment was performed randomly. A 10 minutes rest period was provided after each t. To measure muscle load, the EMG signals of eight muscles (Biceps, Medial triceps, Lateral triceps, Brachioradialis, Extensor carpi ulnaris, Extensor carpi radialis, Flexor carpi ulnaris and Flexor carpi radialis) were evaluated. MVC values and EMG values were analyzed using Minitab ver. 14. The results showed that MVC value was the highest at shoulder $0^{\circ}$, elbow $45^{\circ}$ and wrist supination. In case of wrist postures, MVC of supination is the highest. In case of elbow and shoulder postures, MVC of flexion $45^{\circ}$ and $0^{\circ}$ was the highest. It was found that there were interaction between wrist and elbow posture under shoulder flexion and between shoulder and wrist under elbow flexion $45^{\circ}$. In case of the angle of shoulder $0^{\circ}$, elbow $45^{\circ}$ and wrist supination, the EMG values of four muscles(Medial Triceps, Extensor carpi ulnaris, Extensor carpi radialis, Flexor carpi ulnaris) were the highest. Based on this study, it is worth to note that the combination postures of upper extremity have a large impact on the MVC and EMG. The optimal condition upper extremity was shoulder flexion $0^{\circ}$, elbow flexion $45^{\circ}$ and wrist supination for preventing work-related musculoskeletal disease.

Elbow Orthopaedic Physical Therapy (주관절의 정형 물리치료)

  • Park, Ji-Whan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.1 no.1
    • /
    • pp.65-74
    • /
    • 1995
  • There is no line of demarcation between the shoulder and elbow regions. Pain In the arm may originate at the shoulder with reference downwards or less often at the elbow with reference upwards. Most pains indicated by the patient at the elbow or forearm have a local origin, since at the more distal part of the upper limb the capacity for correct localization is good. Once it is clear that the elbow region is at fault, the joint and the muscles about it are tested by ten movements. 1. Four. Passive extension, flexion, pronation, supination-full range, LOM, painful, painless. 2. Four. Resisted extension, flexion, pronation, supination-strong, weak, painful, painless. 3. Two. Resisted flexion, extension at the wrist-painful, painless. The muscles that perform theses two movements arise from the humeral epicondyles and a lesion in either often causes pain felt at the elbow although the tissuse affected is not functionally a part of the elbow (i. e. Tennis elbow and Golfer's elbow).

  • PDF

Analysis of Abnormal Gait and Over Pronation/Supination Gait Using Smart Insole (스마트 인솔을 이용한 비정상 보행 및 발의 내·외전 분석)

  • Kim, Jinu;Lee, Eun-Young;Kim, Dongho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.907-910
    • /
    • 2018
  • 오늘날 보행 분석은 여러 하지 관절, 뼈 및 근육, 신경 등의 이상을 판단할 수 있는 매우 중요한 지표로 사용되고 있다. 하지만 비정상 보행, 비대칭 보행을 하고 있는 사람들은 자신이 인지 할 수 있을 만큼 그 문제의 정도가 심각하지 않은 상태라면, 그 사실을 모른 채 살아간다. 결국 이런 문제가 지속된다면 향후 큰 질병이 발생하는 요인이 될 수 있다. 본 논문에서는 40개의 압력센서를 내장한 인솔을 통해 각 발의 압력 데이터를 수집하여 미리 정의한 정상 보행 시 나타나는 압력 분포를 기준으로 비정상 보행 여부를 판단하고 보행 시 나타나는 부분별 압력분포 데이터를 이용하여 보행 시 사용자 발의 과내전(over pronation)과 과외전(over supination) 경향도 분석하였다. 스마트 인솔을 사용하여 시간과 공간의 제약이 없는 사용자 친화적이면서 비정상 보행 판단 및 발의 과내 외전 경향 분석에 대해 자가 진단을 보조할 수 있을 것으로 기대한다.