• Title/Summary/Keyword: Supervised Data

Search Result 659, Processing Time 0.022 seconds

Smoothing parameter selection in semi-supervised learning (준지도 학습의 모수 선택에 관한 연구)

  • Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.993-1000
    • /
    • 2016
  • Semi-supervised learning makes it easy to use an unlabeled data in the supervised learning such as classification. Applying the semi-supervised learning on the regression analysis, we propose two methods for a better regression function estimation. The proposed methods have been assumed different marginal densities of independent variables and different smoothing parameters in unlabeled and labeled data. We shows that the overfitted pilot estimator should be used to achieve the fastest convergence rate and unlabeled data may help to improve the convergence rate with well estimated smoothing parameters. We also find the conditions of smoothing parameters to achieve optimal convergence rate.

A Study on Big-5 based Personality Analysis through Analysis and Comparison of Machine Learning Algorithm (머신러닝 알고리즘 분석 및 비교를 통한 Big-5 기반 성격 분석 연구)

  • Kim, Yong-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.169-174
    • /
    • 2019
  • In this study, I use surveillance data collection and data mining, clustered by clustering method, and use supervised learning to judge similarity. I aim to use feature extraction algorithms and supervised learning to analyze the suitability of the correlations of personality. After conducting the questionnaire survey, the researchers refine the collected data based on the questionnaire, classify the data sets through the clustering techniques of WEKA, an open source data mining tool, and judge similarity using supervised learning. I then use feature extraction algorithms and supervised learning to determine the suitability of the results for personality. As a result, it was found that the highest degree of similarity classification was obtained by EM classification and supervised learning by Naïve Bayes. The results of feature classification and supervised learning were found to be useful for judging fitness. I found that the accuracy of each Big-5 personality was changed according to the addition and deletion of the items, and analyzed the differences for each personality.

A Label Inference Algorithm Considering Vertex Importance in Semi-Supervised Learning (준지도 학습에서 꼭지점 중요도를 고려한 레이블 추론)

  • Oh, Byonghwa;Yang, Jihoon;Lee, Hyun-Jin
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1561-1567
    • /
    • 2015
  • Abstract Semi-supervised learning is an area in machine learning that employs both labeled and unlabeled data in order to train a model and has the potential to improve prediction performance compared to supervised learning. Graph-based semi-supervised learning has recently come into focus with two phases: graph construction, which converts the input data into a graph, and label inference, which predicts the appropriate labels for unlabeled data using the constructed graph. The inference is based on the smoothness assumption feature of semi-supervised learning. In this study, we propose an enhanced label inference algorithm by incorporating the importance of each vertex. In addition, we prove the convergence of the suggested algorithm and verify its excellence.

Semi-Supervised SAR Image Classification via Adaptive Threshold Selection (선별적인 임계값 선택을 이용한 준지도 학습의 SAR 분류 기술)

  • Jaejun Do;Minjung Yoo;Jaeseok Lee;Hyoi Moon;Sunok Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.319-328
    • /
    • 2024
  • Semi-supervised learning is a good way to train a classification model using a small number of labeled and large number of unlabeled data. We applied semi-supervised learning to a synthetic aperture radar(SAR) image classification model with a limited number of datasets that are difficult to create. To address the previous difficulties, semi-supervised learning uses a model trained with a small amount of labeled data to generate and learn pseudo labels. Besides, a lot of number of papers use a single fixed threshold to create pseudo labels. In this paper, we present a semi-supervised synthetic aperture radar(SAR) image classification method that applies different thresholds for each class instead of all classes sharing a fixed threshold to improve SAR classification performance with a small number of labeled datasets.

High Efficiency Adaptive Facial Expression Recognition based on Incremental Active Semi-Supervised Learning (점진적 능동준지도 학습 기반 고효율 적응적 얼굴 표정 인식)

  • Kim, Jin-Woo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.165-171
    • /
    • 2017
  • It is difficult to recognize Human's facial expression in the real-world. For these reason, when database and test data have similar condition, we can accomplish high accuracy. Solving these problem, we need to many facial expression data. In this paper, we propose the algorithm for gathering many facial expression data within various environment and gaining high accuracy quickly. This algorithm is training initial model with the ASSL (Active Semi-Supervised Learning) using deep learning network, thereafter gathering unlabeled facial expression data and repeating this process. Through using the ASSL, we gain proper data and high accuracy with less labor force.

Semi-supervised learning using similarity and dissimilarity

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.99-105
    • /
    • 2011
  • We propose a semi-supervised learning algorithm based on a form of regularization that incorporates similarity and dissimilarity penalty terms. Our approach uses a graph-based encoding of similarity and dissimilarity. We also present a model-selection method which employs cross-validation techniques to choose hyperparameters which affect the performance of the proposed method. Simulations using two types of dat sets demonstrate that the proposed method is promising.

Sentiment Orientation Using Deep Learning Sequential and Bidirectional Models

  • Alyamani, Hasan J.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2021
  • Sentiment Analysis has become very important field of research because posting of reviews is becoming a trend. Supervised, unsupervised and semi supervised machine learning methods done lot of work to mine this data. Feature engineering is complex and technical part of machine learning. Deep learning is a new trend, where this laborious work can be done automatically. Many researchers have done many works on Deep learning Convolutional Neural Network (CNN) and Long Shor Term Memory (LSTM) Neural Network. These requires high processing speed and memory. Here author suggested two models simple & bidirectional deep leaning, which can work on text data with normal processing speed. At end both models are compared and found bidirectional model is best, because simple model achieve 50% accuracy and bidirectional deep learning model achieve 99% accuracy on trained data while 78% accuracy on test data. But this is based on 10-epochs and 40-batch size. This accuracy can also be increased by making different attempts on epochs and batch size.

Machine Learning Techniques for Speech Recognition using the Magnitude

  • Krishnan, C. Gopala;Robinson, Y. Harold;Chilamkurti, Naveen
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • Machine learning consists of supervised and unsupervised learning among which supervised learning is used for the speech recognition objectives. Supervised learning is the Data mining task of inferring a function from labeled training data. Speech recognition is the current trend that has gained focus over the decades. Most automation technologies use speech and speech recognition for various perspectives. This paper demonstrates an overview of major technological standpoint and gratitude of the elementary development of speech recognition and provides impression method has been developed in every stage of speech recognition using supervised learning. The project will use DNN to recognize speeches using magnitudes with large datasets.

A Hybrid Selection Method of Helpful Unlabeled Data Applicable for Semi-Supervised Learning Algorithm

  • Le, Thanh-Binh;Kim, Sang-Woon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.234-239
    • /
    • 2014
  • This paper presents an empirical study on selecting a small amount of useful unlabeled data to improve the classification accuracy of semi-supervised learning algorithms. In particular, a hybrid method of unifying the simply recycled selection method and the incrementally-reinforced selection method was considered and evaluated empirically. The experimental results, which were obtained from well-known benchmark data sets using semi-supervised support vector machines, demonstrated that the hybrid method works better than the traditional ones in terms of the classification accuracy.

Input Variable Importance in Supervised Learning Models

  • Huh, Myung-Hoe;Lee, Yong Goo
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.239-246
    • /
    • 2003
  • Statisticians, or data miners, are often requested to assess the importances of input variables in the given supervised learning model. For the purpose, one may rely on separate ad hoc measures depending on modeling types, such as linear regressions, the neural networks or trees. Consequently, the conceptual consistency in input variable importance measures is lacking, so that the measures cannot be directly used in comparing different types of models, which is often done in data mining processes, In this short communication, we propose a unified approach to the importance measurement of input variables. Our method uses sensitivity analysis which begins by perturbing the values of input variables and monitors the output change. Research scope is limited to the models for continuous output, although it is not difficult to extend the method to supervised learning models for categorical outcomes.