• Title/Summary/Keyword: Supervised Classification

Search Result 403, Processing Time 0.022 seconds

A study on the waveform-based end-to-end deep convolutional neural network for weakly supervised sound event detection (약지도 음향 이벤트 검출을 위한 파형 기반의 종단간 심층 콘볼루션 신경망에 대한 연구)

  • Lee, Seokjin;Kim, Minhan;Jeong, Youngho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.24-31
    • /
    • 2020
  • In this paper, the deep convolutional neural network for sound event detection is studied. Especially, the end-to-end neural network, which generates the detection results from the input audio waveform, is studied for weakly supervised problem that includes weakly-labeled and unlabeled dataset. The proposed system is based on the network structure that consists of deeply-stacked 1-dimensional convolutional neural networks, and enhanced by the skip connection and gating mechanism. Additionally, the proposed system is enhanced by the sound event detection and post processings, and the training step using the mean-teacher model is added to deal with the weakly supervised data. The proposed system was evaluated by the Detection and Classification of Acoustic Scenes and Events (DCASE) 2019 Task 4 dataset, and the result shows that the proposed system has F1-scores of 54 % (segment-based) and 32 % (event-based).

A Constraint-based Semi-supervised Clustering Through Initial Prediction of Unlabeled Data (비분류표시 데이터의 초기예측을 통한 제약기반 부분-지도 군집분석)

  • Kim, Eung-Gu;Jeon, Chi-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.383-387
    • /
    • 2007
  • Traditional clustering is regarded as an unsupervised teaming to analyze unlabeled data. Semi-supervised clustering uses a small amount of labeled data to predict labels of unlabeled data as well as to improve clustering performance. Previous methods use constraints generated from available labeled data in clustering process. We propose a new constraint-based semi-supervised clustering method by reflecting initial predicted labels of unlabeled data. We evaluate and compare the performance of the proposed method in terms of classification errors through numerical experiments with blinded labeled data.

  • PDF

Semi-Supervised Learning by Gaussian Mixtures (정규 혼합분포를 이용한 준지도 학습)

  • Choi, Byoung-Jeong;Chae, Youn-Seok;Choi, Woo-Young;Park, Chang-Yi;Koo, Ja-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.5
    • /
    • pp.825-833
    • /
    • 2008
  • Discriminant analysis based on Gaussian mixture models, an useful tool for multi-class classifications, can be extended to semi-supervised learning. We consider a model selection problem for a Gaussian mixture model in semi-supervised learning. More specifically, we adopt Bayesian information criterion to determine the number of subclasses in the mixture model. Through simulations, we illustrate the usefulness of the criterion.

Deep Hashing for Semi-supervised Content Based Image Retrieval

  • Bashir, Muhammad Khawar;Saleem, Yasir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3790-3803
    • /
    • 2018
  • Content-based image retrieval is an approach used to query images based on their semantics. Semantic based retrieval has its application in all fields including medicine, space, computing etc. Semantically generated binary hash codes can improve content-based image retrieval. These semantic labels / binary hash codes can be generated from unlabeled data using convolutional autoencoders. Proposed approach uses semi-supervised deep hashing with semantic learning and binary code generation by minimizing the objective function. Convolutional autoencoders are basis to extract semantic features due to its property of image generation from low level semantic representations. These representations of images are more effective than simple feature extraction and can preserve better semantic information. Proposed activation and loss functions helped to minimize classification error and produce better hash codes. Most widely used datasets have been used for verification of this approach that outperforms the existing methods.

Analysis of the effect of class classification learning on the saliency map of Self-Supervised Transformer (클래스분류 학습이 Self-Supervised Transformer의 saliency map에 미치는 영향 분석)

  • Kim, JaeWook;Kim, Hyeoncheol
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.67-70
    • /
    • 2022
  • NLP 분야에서 적극 활용되기 시작한 Transformer 모델을 Vision 분야에서 적용하기 시작하면서 object detection과 segmentation 등 각종 분야에서 기존 CNN 기반 모델의 정체된 성능을 극복하며 향상되고 있다. 또한, label 데이터 없이 이미지들로만 자기지도학습을 한 ViT(Vision Transformer) 모델을 통해 이미지에 포함된 여러 중요한 객체의 영역을 검출하는 saliency map을 추출할 수 있게 되었으며, 이로 인해 ViT의 자기지도학습을 통한 object detection과 semantic segmentation 연구가 활발히 진행되고 있다. 본 논문에서는 ViT 모델 뒤에 classifier를 붙인 모델에 일반 학습한 모델과 자기지도학습의 pretrained weight을 사용해서 전이학습한 모델의 시각화를 통해 각 saliency map들을 비교 분석하였다. 이를 통해, 클래스 분류 학습 기반 전이학습이 transformer의 saliency map에 미치는 영향을 확인할 수 있었다.

  • PDF

The Construction of a Domain-Specific Sentiment Dictionary Using Graph-based Semi-supervised Learning Method (그래프 기반 준지도 학습 방법을 이용한 특정분야 감성사전 구축)

  • Kim, Jung-Ho;Oh, Yean-Ju;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • Sentiment lexicon is an essential element for expressing sentiment on a text or recognizing sentiment from a text. We propose a graph-based semi-supervised learning method to construct a sentiment dictionary as sentiment lexicon set. In particular, we focus on the construction of domain-specific sentiment dictionary. The proposed method makes up a graph according to lexicons and proximity among lexicons, and sentiments of some lexicons which already know their sentiment values are propagated throughout all of the lexicons on the graph. There are two typical types of the sentiment lexicon, sentiment words and sentiment phrase, and we construct a sentiment dictionary by creating each graph of them and infer sentiment of all sentiment lexicons. In order to verify our proposed method, we constructed a sentiment dictionary specific to the movie domain, and conducted sentiment classification experiments with it. As a result, it have been shown that the classification performance using the sentiment dictionary is better than the other using typical general-purpose sentiment dictionary.

Application of Landsat ETM Image to Estimate the Distribution of Soil Types and Erosional Pattern in the Wildfire Area of Gangneung, Gangweon Province, Korea (강원도 강릉시 산불지역에서의 토양유형의 분포와 침식양상파악을 위한 Landsat ETM 영상의 활용)

  • Yang, Dong-Yoon;Kim, Ju-Yong;Chung, Gong-Soo;Lee, Jin-Young
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.764-773
    • /
    • 2004
  • The soil in wildfire area Sacheon-myeon, Gangneung, Gangweon Province, Korea, were investigated to clarify pattern of the soils. The soils were classified into 5 types on the basis of vegetation, types of organic matter. thickness of soil horizons, and completeness of soil profile. Each type showed different erosion pattern and Landsat ETM image. Coverage of plant leaves, litter, root, ash and other organic matter was an important component that affected soil color and reflectance of Landsat image (digital number). Although the NDVI (Normalized Distribution Vegetation Index) method in the wildfire area did not show much difference in soil types, the applied supervised classification method showed characteristic pattern of Landsat ETM image of soil types. This study showed that the applied supervised Landsat TM image classification in wildfire area is an effective way to estimate the distribution of erosion pattern of soil in wildfire area.

A Reconstruction of Classification for Iris Species Using Euclidean Distance Based on a Machine Learning (머신러닝 기반 유클리드 거리를 이용한 붓꽃 품종 분류 재구성)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.225-230
    • /
    • 2020
  • Machine learning is an algorithm which learns a computer based on the data so that the computer can identify the trend of the data and predict the output of new input data. Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is a way of learning a machine with given label of data. In other words, a method of inferring a function of the system through a pair of data and a label is used to predict a result using a function inferred about new input data. If the predicted value is continuous, regression analysis is used. If the predicted value is discrete, it is used as a classification. A result of analysis, no. 8 (5, 3.4, setosa), 27 (5, 3.4, setosa), 41 (5, 3.5, setosa), 44 (5, 3.5, setosa) and 40 (5.1, 3.4, setosa) in Table 3 were classified as the most similar Iris flower. Therefore, theoretical practical are suggested.

The Study of DMZ Wildfire Damage Area Detection Method Using Sentinel-2 Satellite Images (Sentinel-2 위성영상을 이용한 DMZ 산불 피해 면적 관측 기법 연구)

  • Lee, Seulki;Song, Jong-Sung;Lee, Chang-Wook;Ko, Bokyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.545-557
    • /
    • 2022
  • This study used high-resolution satellite images and supervised classification technique based on machine learning method in order to detect the areas affected by wildfires in the demilitarized zone (DMZ) where direct access is difficult. Sentinel-2 A/B was used for high-resolution satellite images. Land cover map was calculated based on the SVM supervised classification technique. In order to find the optimal combination to classify the DMZ wildfire damage area, supervised classification according to various kernel and band combinations in the SVM was performed and the accuracy was evaluated through the error matrix. Verification was performed by comparing the results of the wildfire detection based on satellite image and data by the wildfire statistical annual report in 2020 and 2021. Also, wildfire damage areas was detected for which there is no current data in 2022. This is to quickly determine reliable results.

Improving the Classification Accuracy Using Unlabeled Data: A Naive Bayesian Case (나이브 베이지안 환경에서 미분류 데이터를 이용한 성능향상)

  • Lee Chang-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.457-462
    • /
    • 2006
  • In many applications, an enormous amount of unlabeled data is available with little cost. Therefore, it is natural to ask whether we can take advantage of these unlabeled data in classification learning. In this paper, we analyzed the role of unlabeled data in the context of naive Bayesian learning. Experimental results show that including unlabeled data as part of training data can significantly improve the performance of classification accuracy. The effect of using unlabeled data is especially important in case labeled data are sparse.