• Title/Summary/Keyword: Supertall

Search Result 45, Processing Time 0.022 seconds

Effects of Perimeter to Core Connectivity on Tall Building Behavior

  • Besjak, Charles;Biswas, Preetam;Petrov, Georgi I.;Streeter, Matthew;Devin, Austin
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The Pertamina Energy Tower (PET) and Manhattan West North Tower (MWNT) are two supertall towers recently designed and engineered by Skidmore, Owings & Merrill (SOM). The structural system for both buildings consists of an interior reinforced concrete core and a perimeter moment frame system, which is primarily structural steel. As is typical for tall towers with both concrete and steel elements, staged construction analysis was performed in order to account for the long term effects of creep and shrinkage, which result in differential shortening between the interior concrete core and steel perimeter frame. The particular design of each tower represents two extremes of behavior; PET has a robust connection between the perimeter and core in the form of three sets of outriggers, while the perimeter columns of MWNT do not reach the ground, but are transferred to the core above the base. This paper will present a comparison of the techniques used during the analysis and construction stages of the design process with the goal of understanding the differences in structural behavior of these two building systems in response to the long term effects of creep and shrinkage. This paper will also discuss the design and construction techniques implemented in order to minimize the differential shortening between the interior and exterior over the lifespan of these towers.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

Modeling of temperature distribution in a reinforced concrete supertall structure based on structural health monitoring data

  • Ni, Y.Q.;Ye, X.W.;Lin, K.C.;Liao, W.Y.
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.293-309
    • /
    • 2011
  • A long-term structural health monitoring (SHM) system comprising over 700 sensors of sixteen types has been implemented on the Guangzhou Television and Sightseeing Tower (GTST) of 610 m high for real-time monitoring of the structure at both construction and service stages. As part of this sophisticated SHM system, 48 temperature sensors have been deployed at 12 cross-sections of the reinforced concrete inner structure of the GTST to provide on-line monitoring via a wireless data transmission system. In this paper, the differential temperature profiles in the reinforced concrete inner structure of the GTST, which are mainly caused by solar radiation, are recognized from the monitoring data with the purpose of understanding the temperature-induced structural internal forces and deformations. After a careful examination of the pre-classified temperature measurement data obtained under sunny days and non-sunny days, common characteristic of the daily temperature variation is observed from the data acquired in sunny days. Making use of 60-day temperature measurement data obtained in sunny days, statistical patterns of the daily rising temperature and daily descending temperature are synthesized, and temperature distribution models of the reinforced concrete inner structure of the GTST are formulated using linear regression analysis. The developed monitoring-based temperature distribution models will serve as a reliable input for numerical prediction of the temperature-induced deformations and provide a robust basis to facilitate the design and construction of similar structures in consideration of thermal effects.

Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method

  • Zhang, Feng-Liang;Ni, Yi-Qing;Ni, Yan-Chun;Wang, You-Wu
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.209-230
    • /
    • 2016
  • The Canton Tower is a high-rise slender structure with a height of 610 m. A structural health monitoring system has been instrumented on the structure, by which data is continuously monitored. This paper presents an investigation on the identified modal properties of the Canton Tower using ambient vibration data collected during a whole day (24 hours). A recently developed Fast Bayesian FFT method is utilized for operational modal analysis on the basis of the measured acceleration data. The approach views modal identification as an inference problem where probability is used as a measure for the relative plausibility of outcomes given a model of the structure and measured data. Focusing on the first several modes, the modal properties of this supertall slender structure are identified on non-overlapping time windows during the whole day under normal wind speed. With the identified modal parameters and the associated posterior uncertainty, the distribution of the modal parameters in the future is predicted and assessed. By defining the modal root-mean-square value in terms of the power spectral density of modal force identified, the identified natural frequencies and damping ratios versus the vibration amplitude are investigated with the associated posterior uncertainty considered. Meanwhile, the correlations between modal parameters and temperature, modal parameters and wind speed are studied. For comparison purpose, the frequency domain decomposition (FDD) method is also utilized to identify the modal parameters. The identified results obtained by the Bayesian method, the FDD method and a finite element model are compared and discussed.

Curtain Wall Façades on the New Generation of Supertall Buildings Present and Future Directions

  • Oh, Sae Hwang
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • Beginning in the late 19th century, construction of skyscrapers spread throughout Chicago, New York City, and then the world as demand of space in buildings and increase of cost of land. With this change curtain wall systems have evolved to be more visually complex; these unique profiles of the skyscraper became powerful images and symbols of our cities. A curtain wall is defined as usually aluminum-framed wall containing in-fills of glass and metal panels. The framing is attached to the building structure and does not carry the floor or roof loads of the building.

The Rational Optimization and Evolution of the Structural Diagonal Aesthetic in Super-Tall Towers

  • Besjak, Charles;Biswas, Preetam;Fast, Tobias
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.305-318
    • /
    • 2016
  • In the design of super-tall towers, engineers often find the conventional frame systems used in countless buildings in the past decades incapable of providing the required form, performance and constructability demanded by super-tall heights. The strength of the diagrid as a structural system in high-rise towers is the total flexibility it affords the designer as an adaptable, efficient and buildable scheme. Using fundamental engineering principles combined with modern computational tools, designers can take minimum load path forms to create rationalized diagrid geometries to create optimized, highly efficient towers. The use of diagrid frames at SOM has evolved as a structural typology beginning with the large braced frames on the John Hancock Center and continued in modern applications proving to be a powerful system in meeting the demands of supertall buildings.

Developments of Structural Systems Toward Mile-High Towers

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.197-214
    • /
    • 2018
  • Tall buildings which began from about 40 m tall office towers in the late $19^{th}$ century have evolved into mixed-use megatall towers over 800 m. It is expected that even mile-high towers will soon no longer be a dream. Structural systems have always been one of the most fundamental technologies for the dramatic developments of tall buildings. This paper presents structural systems employed for the world's tallest buildings of different periods since the emergence of supertall buildings in the early 1930s. Further, structural systems used for today's extremely tall buildings over 500 m, such as core-outrigger, braced mega-tube, mixed, and buttressed core systems, are reviewed and their performances are studied. Finally, this paper investigates the potential of superframed conjoined towers as a viable structural and architectural solution for mile-high and even taller towers in the future.

Experimental Study for Confined Concrete of Double Skinned Composite Tubular Columns by Uniaxial Compression Test (일축 압축 실험을 통한 DSCT 부재의 구속 콘크리트에 대한 실험적 연구)

  • Lee, Jeong-Hwa;Han, Sang-Yun;Won, Deok-Hee;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, uniaxial compression tests were performed to investigates the stress-strain relations of Double Skinned Composite Tubular Columns reinforced with steel tube. The confined concrete has been known as the strength of concrete increases significantly. Specimens reinforced with outer and inner steel tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in steel tubes, 8 specimens with different thickness of tube, hollowness ratio and concrete strength were tested and compared with other researcher's concrete material model.

The Economics of Skyscraper Construction in Manhattan: Past, Present, and Future

  • Barr, Jason
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • This paper discusses the economics of skyscraper construction in Manhattan since 1990. First the paper reviews the economic theory of skyscraper height. Next it documents the frequency and heights of skyscraper construction in the last 25 years. Then the paper reviews the relative movements of office rents, condominium prices, and construction costs. Statistical results suggest that the resurgence of Manhattan's skyscraper construction is being driving by the rise in the average price of apartments, and is not being driven by rising office rents or falling construction costs. Statistical evidence shows that the height premium has not been rising over the last decade. Developers have been purchasing air rights (and bidding up the prices) in order to satisfy the demand for supertall buildings. In the next five to ten years, Manhattan is likely to see over thirty 200-meter or taller buildings, as compared to only four since 2010.

Dynamic Interrelationship between the Evolution of Structural Systems and Façade Design in Tall Buildings: From the Home Insurance Building in Chicago to the Present

  • Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The emergence of tall buildings in the late $19^{th}$ century was possible by using new materials and separating the role of structures and that of non-structural walls from the traditional load-bearing walls that acted as both. The role of structures is more important in tall buildings than in any other building type due to the "premium for height". Among the walls freed from their structural roles, façades are of conspicuous importance as building identifiers, significant definers of building aesthetics, and environmental mediators. This paper studies dynamic interrelationship between the evolution of tall building structural systems and façade design, beginning from the early tall buildings of skeletal structures with primitive curtainwalls to the recent supertall buildings of various tubular and outrigger structures with more advanced contemporary curtainwalls.