• 제목/요약/키워드: Superstructure

Search Result 604, Processing Time 0.127 seconds

A Study on the Fore-and-After Vibration of Superstructure (선체(船體) 상부구조물(上部構造物)의 전후진동(前後振動)에 관한 연구(硏究))

  • Sa-Soo,Kim;Dong-Myung,Bae;Ku-Kyun,Shin;Jong-Hyun,Noh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.2
    • /
    • pp.31-43
    • /
    • 1988
  • In recent years increased attention has been directed towards the problems of vibration and noise in superstructure, which have caused major problems with regard to the environmental afterbody of the ship, and the fore-and-after vibration of superstructure due to the vertical vibration of main hull girder is the most important as for the inhabitation of the ship. Accordingly, in this paper, the characteristics of the fore-and after vibration of superstructure and studied systematically with regard to the shape and height of superstructure based on finite element method of beam-like model. The study is divided into two parts, one is the calculation of natural frequencies and the other is the investigation of response at the top of superstructure caused by in its harmonic excitation force at the stern of hull girder. For the natural frequency the calculation results are shown that the higher superstructure is, the lower the natural frequencies of the fore-and-after vibration of superstructure is. It means that the natural frequency of superstructure is close to that of hull girder. The response of vertical direction at the stern of hull girder induced by unit harmonic force is less affected by the shape and the height of superstructure but the response of the fore-and-after direction at the top of superstructure is affected considerably by those of superstructure.

  • PDF

Case Study on Habitability of Superstructure built on Floating Structure

  • Maruyoshi Koichi;Cho Yong-Soo;Song Hwa-Cheol;Saijo Osamu
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.131-136
    • /
    • 2006
  • Researches on a superstructure built on a floating structure in the shape of pontoon type have begun in recent years. A superstructure responds by wave load and it is important to evaluate its habitability. The purpose of this study is evaluation and investigation of habitability of a superstructure due to wave for 10 year return period. In this study, response analyses of the superstructure built on middle-sized floating structure due to the waves of three cases were carried out by 3-D integration analysis, which means analyzing the calculation model integrated a superstructure with a floating structure, and its habitability was evaluated by the evaluation diagrams. As the result, the habitability differed by each wave condition The use of a superstructure is restricted according to the disposition of a floating structure for incident wave angle.

Effect of nano-carbon addition on color performance of polystyrene superstructure film

  • ZHOU, Ye-min;Wang, Li-li;LI, Xiao-peng;Wang, Xiu-feng;Jiang, Hong-tao
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.479-482
    • /
    • 2018
  • Polystyrene superstructure films show faint rainbow color, and this low color saturation limits its wide application. In this paper, polystyrene superstructure films with single bright blue color were prepared by vertical deposition self-assembly method using polystyrene microspheres with average diameter of $310{\pm}10nm$ as raw material. Polystyrene superstructure films were modified by adding nano-carbon powder, and effect of the amount of nano-carbon powde on color performance was studied. The results showed that without addition of nano-carbon powder, the superstructure films showed a faint rainbow color, while with addition of nano-carbon power, the superstructure films exhibited a single bright blue under the same natural light source. Changing the amount of nano-carbon powder addition could adjust color saturation of the film. With increasing the amount of nano-carbon powder addition from 0.008 wt% to 0.01 wt%, color saturation of the superstructure film increased gradually. Further increasing the amount of nano-carbon powder addition to 0.011wt%, color saturation of the superstructure film didn't increase anymore and tended to get dark.

Determination of minimum depth of prestressed concrete I-Girder bridge for different design truck

  • Atmaca, Barbaros
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The depth of superstructure is the summation of the height of girders and the thickness of the deck floor. In this study, it is aim to determine the maximum span length of girders and minimum depth of the superstructure of prestressed concrete I-girder bridge. For this purpose the superstructure of the bridge with the width of 10m and the thickness of the deck floor of 0.175m, which the girders length was changed by two meter increments between 15m and 35m, was taken into account. Twelve different girders with heights of 60, 75, 90, 100, 110, 120, 130, 140, 150, 160, 170 and 180 cm, which are frequently used in Turkey, were chosen as girder type. The analyses of the superstructure of prestressed concrete I girder bridge was conducted with I-CAD software. In the analyses AASHTO LRFD (2012) conditions were taken into account a great extent. The dead loads of the structural and non-structural elements forming the bridge superstructure, prestressing force, standard truck load, equivalent lane load and pedestrian load were taken into consideration. HL93, design truck of AASHTO and also H30S24 design truck of Turkish Code were selected as vehicular live load. The allowable concrete stress limit, the number of prestressed strands, the number of debonded strands and the deflection parameters obtained from analyses were compared with the limit values found in AASHTO LRFD (2012) to determine the suitability of the girders. At the end of the study maximum span length of girders and equation using for calculation for minimum depth of the superstructure of prestressed concrete I-girder bridge were proposed.

Generation of Information Model for Modular Steel Bridge Superstructure Considering Module Assembly Condition (모듈 조합조건을 고려한 모듈러 강교량 상부구조의 정보모델 생성)

  • Seo, Kyung-Wan;Park, Junwon;Kwon, Tae Ho;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.393-400
    • /
    • 2015
  • This study proposes a method to create and combine a superstructure module by parametric modeling, in order to improve the production efficiency of information model for modular steel bridge superstructure that can be used in planning, design and construction phase. Compound classification was performed in order to derive elements to apply the parametric modeling, and according to assembly condition, the classified elements were grouped into 13 types. In addition, three assembly conditions were derived for production of stable superstructure through combination of superstructure module, which is a production unit for modular steel bridge factory. Parameter that reflects assembly condition in compound shape when producing superstructure module through parametric modeling was deducted. Superstructure module compounds were produced according to type and parameter using interface generation based on Building Information Model(BIM) software that was developed in this study. The superstructure module produced reflects information to combine into a superstructure. To verify this, information model based on Industry Foundation Classes(IFC) was built and confirmed the application in production of superstructure by identifying the reflected property information.

Development of Three-dimensional Interactive Analysis for Superstructure-piled raft foundation (구조물-말뚝지지 전면기초의 3차원 상호작용 해석기법 개발)

  • Cho, Jae-Yeon;Jeong, Sang-Seom;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.6
    • /
    • pp.19-31
    • /
    • 2013
  • In engineering practices, the superstructure was analyzed under a fixed boundary condition and the foundation was designed by considering the loading condition of superstructure. It may result in overestimation of forces, the bending moment, settlement of superstructure and foundation. In this study, an interactive analytical method is proposed for the interaction between the superstructure and the piled raft. The overall objective of this study is focused on the application of interactive analysis method for predicting behavior of entire structures. And a series of numerical analyses are performed to verify the interactive analysis routine in comparison to the unified analysis method. Through the comparative studies, it is found that the iterative and interactive analysis gave similar results of settlement and raft bending moment compared with those of finite element analysis. And it is also found that the proposed design method considering interaction between superstructure and foundation is capable of predicting reasonably well the behavior of entire structures. It can be effectively used to the design of a superstructure-piled raft foundation system.

Seismic Response Analysis of a Base-Isolated Structure Supported on High Damping Rubber Bearings (고감쇠 면진베어링에 의해 지지된 면진구조물의 지진응답해석)

  • Yoo, Bong;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.99-106
    • /
    • 1995
  • The seismic responses of a base Isolated Pressurized Water Reactor(PWR) are investigated using a mathematical model which expresses the superstructure as a linear lumped mass-spring and the seismic Isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 El Centre earthquake with linear amplification. In the analysis 5% of structural damping is used for the superstructure. The effects of high damping rubber bearing on seismic response of the superstructure in base isolated system are evaluated for four stiffness model types. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure. In the higher strain region where stiffness behaves non-linearly, the acceleration responses modelled by one equivalent stiffness are smaller than those in nonlinear spring model, and the higher stiffness spring model of isolator exhibits larger peak acceleration response at superstructure in the frequency range above 2.0 Hz. when subjected to linearly amplified 1940 El Centre earthquake.

  • PDF

Effects of High Damping Rubber Bearing on Horizontal and Vertical Seismic Responses of a Pressurized Water Reactor

  • Bong Yoo;Lee, Jae-Han;Koo, Gyeong-Hoi
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1021-1026
    • /
    • 1995
  • The seismic responses of a base isolated Pressurized Water Reactor (PWR) are investigated using a mathematical model which expresses the superstructure as lumped mass-spring model and the seismic isolator as an equivalent spring-damper. Time history analyses are performed for the 1940 E1 Centre earthquakes in both horizontal and vertical directions. In the analysis, structural damping of 5% is used for the superstructure. The isolator damping ratios of 12% for horizontal and 5% for vertical directions are used. The acceleration responses in base isolated PWR superstructure with high damping rubber bearings are much smaller than those in fixed base structure in horizontal direction. However, the vertical acceleration responses at the superstructure in the base isolation system are amplified to some extent. It is suggested that the vertical seismic responses at the superstructure should be reduced by introducing a soft vertical isolation device.

  • PDF

Development of Model for Selecting Superstructure Type of Small Size Bridge Using Dual Classification Method (이원분류기법을 이용한 소규모 교량 상부형식선정 모형에 관한 연구)

  • Yun, Su Young;Kim, Chang Hak;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1413-1420
    • /
    • 2015
  • On the design phase of small size bridge, owing to the lack of related guidelines or standards to determine a superstructure type of bridge, many designers tend to select the type depending on expert's experience and knowledge. Moreover, recently, as types of bridge superstructure become diverse and more conditions need to be considered in the project, the decision makes process become complex. This research covered the selection of a superstructure type of a middle or small size bridge with span length of about 50m, which frequently built for national roadway, selecting type of bridge superstructure more systematic way rather than the existing ways to compare construction methods or to depend on expert's experiences. This study proposes to build a bridge superstructure type selection model using one of the techniques of artificial intelligence techniques SVM by applicability of the model examined through the verification of the actual case.

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.