• 제목/요약/키워드: Supersonic plasma

검색결과 28건 처리시간 0.026초

High enthalpy supersonic plasma test facility and its applications

  • 서준호;최성만;신의섭;서용석;김민호;최채홍;홍봉근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.92-92
    • /
    • 2010
  • 전북대학교에서는 우리나라 최초로 0.4 및 2.4 MW 급 초음속 열플라즈마 시험 시설 구축사업을 진행하고 있으며, 이를 이용한 응용 분야 별 선행연구를 수행하고 있다. 구축 시험 시설의 핵심장치인 MW 급 대출력 초음속 열플라즈마 발생기로는 양극과 음극 사이에, 전기적으로 절연된 도넛 형태의 간극을 다수 삽입하여 아크 길이를 늘림으로써, 플라즈마 출력을 비례하여 높일 수 있는 Segmented 형 아크 직류 토치를 사용하고자 하며, 제작을 위해 설계 중인 토치는 0.4 및 2.4 MW 출력에 대해, 마하 2 이상의 초음속 유동에서 각각 13 및 20 MJ/kg 이상의 플라즈마 비엔탈피 구현을 목표로 하고 있다. 특히, 이와 같은 고엔탈피 초음속 유동의 달성은 0.4MW 급의 경우엔 공기유량 0.01 kg/s 이상에서, 2.4 MW 급의 경우엔 0.05 kg/s 이상에서 10Torr 이하의 진공과 투입된 MW 규모의 열량을 지속적으로 유지 및 제거할 수 있는 시설이 있어야 구현 가능하므로 이를 위한 건축과 지원시설 구축을 동시에 진행하고 있다. 본 발표에서는 0.4 MW 급 초음속 열플라즈마 시험 시설을 중심으로, 상기 MW 급 Segmented 형 아크 직류토치와 이를 구동하기 위한 대출력 초음속 열플라즈마 시험 시설에 대해 그 동안 전북대학교에서 진행되어 온 개념설계 내용을 소개하고자 한다. 덧붙여, 최근 본 사업단에서 선행 연구 중인 고엔탈피 초음속 열플라즈마 진단 계측 기법과 향후 응용분야 및 핵심 연구개발 과제 등에 대한 간략한 소개도 함께 하고자 한다.

  • PDF

로켓 추진기관용 C/SiC 내열부품 개발 (Development of C/SiC Composite Parts for Rocket Propulsion)

  • 김연철;서상규
    • 한국추진공학회지
    • /
    • 제23권2호
    • /
    • pp.68-77
    • /
    • 2019
  • 고체 및 액체 로켓 추진 기관 내열부품으로 사용하기 위하여 C/SiC 복합 재료를 LSI(Liquid Silicon Infiltration) 공법으로 개발하였다. 조성비에 따른 내열 특성은 아크 플라즈마, 초음속 토치 시험으로 평가하였으며 $H_2O$$CO_2$ 산화에 의한 유효 삭마식을 제시하였다. 연소시험을 통하여 고체 및 액체 추진기관용 노즐목 삽입재, 확대부 내열재 및 연소실 내열부품 등 다양한 형상으로 제작이 가능함을 확인하였으며 높은 내삭마 성능과 열구조 성능이 입증되었다.

DYNAMIC FORMATION AND ASSOCIATED HEATING OF A MAGNETIC LOOP ON THE SUN

  • Tetsuya, Magara;Yeonwoo, Jang;Donghui, Son
    • 천문학회지
    • /
    • 제55권6호
    • /
    • pp.215-220
    • /
    • 2022
  • To seek an atmospheric heating mechanism operating on the Sun we investigated a heating source generated by a downflow, both of which may arise in a magnetic loop dynamically formed on the Sun via flux emergence. Since an observation shows that the illumination of evolving magnetic loops under the dynamic formation occurs sporadically and intermittently, we performed a magnetohydrodynamic simulation of flux emergence to obtain a high-cadence simulated data, where temperature enhancement was identified at the footpoint of an evolving magnetic loop. Unlike a rigid magnetic loop with a confined flow in it, the evolving loop in a low plasma β atmosphere is subjected to local compression by the magnetic field surrounding the loop, which drives a strong supersonic downflow generating an effective footpoint heating source in it. This may introduce an energy conversion system to the magnetized atmosphere of the Sun, in which the free magnetic energy causing the compression via Lorentz force is converted to the flow energy, and eventually reduced to the thermal energy. Dynamic and thermodynamic states involved in the system are explained.

A Model for Diffusive Shock Acceleration of Protons in Intracluster Shocks and Gamma-ray and Neutrino Emissions from Clusters of Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.54.3-54.3
    • /
    • 2019
  • During the formation of large-scale structures in the universe, shocks with the sonic Mach number Ms <~ 5 are naturally induced by supersonic flow motions of baryonic matter in the intracluster medium (ICM). Cosmic rays (CRs) are expected to be accelerated via diffusive shock acceleration (DSA) at these ICM shocks, although the existence of CR protons in the ICM remains to be confirmed through gamma-ray observations. Based on the results obtained from kinetic plasma simulations, we build an analytic DSA model for weak, quasi-parallel shocks in the test-particle regime. With our DSA model, the CR acceleration efficiency ranges ~ 0.001 - 0.02 in supercritical quasi-parallel shocks with sonic Mach number Ms ~ 2.25 - 5, and the acceleration would be negligible in subcritical shocks wth Ms <~ 2.25. Adopting our DSA model, we estimate gamma-ray and neutrino emissions from clusters of galaxies by performing cosmological hydrodynamic simulations. The estimated gamma-ray flux is below the Fermi-LAT upper limit. In addition, the possible neutrino emission due to the decay of charged pions in galaxy clusters would be about <~ 1% of the atmospheric neutrino intensity in the energy range of <~ 100 GeV. In this talk, we will discuss the implication of our results.

  • PDF

Chemical Reactivity of Ti+ within Water, Dimethyl Ether, and Methanol Clusters

  • Koo, Young-Mi;An, Hyung-Joon;Yoo, Seoung-Kyo;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권2호
    • /
    • pp.197-204
    • /
    • 2003
  • The intracluster ion-molecule reactions of $Ti^+(H_2O)_n,\;Ti^+(CH_3OCH_3)_n,\;and\;Ti^+(CH_3OD)_n$ complexes produced by the mixing of the laser-vaporized plasma and the pulsed supersonic beam were studied using a reflectron time-of-flight mass spectrometer. The reactions of $Ti^+$ with water clusters were dominated by the dehydrogenation reaction, which produces $TiO^+(H_2O)_n$ clusters. The mass spectra resulting from the reactions of $Ti^+\;with\;CH_3OCH_3$ clusters exhibit a major sequence of $Ti^+(OCH_3)_m(CH_3OCH_3)_n$ cluster ions, which is attributed to the insertion of $Ti^+$ ion into C-O bond of $CH_3OCH_3$ followed by $CH_3$ elimination. The prevalence of $Ti^+(OCH_3)_m(CH_3OD)_n$ ions in the reaction of $Ti^+\;with\;CH_3OD$ clusters suggests that D elimination via O-D bond insertion is the preferred decomposition pathway. In addition, the results indicate that consecutive insertion reactions by the $Ti^+$ ion occur for up to three precursor molecules. Thus, examination of $Ti^+$ insertion into three different molecules establishes the reactivity order: O-H > C-O > C-H. The experiments additionally show that the chemical reactivity of heterocluster ions is greatly influenced by cluster size and argon stagnation pressure. The reaction energetics and formation mechanisms of the observed heterocluster ions are also discussed.

Internal Changes of Blood Compartment and Heat Distribution in Swamp Buffaloes under Hot Conditions : Comparative Study of Thermo-Regulation in Buffaloes and Friesian Cows

  • Koga, A.;Kurata, K.;Ohata, K.;Nakajima, M.;Hirose, H.;Furukawa, R.;Kanai, Y.;Chikamune, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.886-890
    • /
    • 1999
  • From previous studies, there is a strong possibility in buffaloes that the marked increase in blood volume (BV) under hot conditions contributes to heat transportation from the rectum to the skin. The present study was done to clarify changes with environmental temperature on water-shift between blood and extracellular fluid (ECF), heat distribution between the rectum and the skin, and blood flow rates (BFR) at the hind legs (reflecting the skin surface). Four buffaloes and four Friesian cows were successively exposed to three different temperatures of $20^{\circ}C$, $30^{\circ}C$ and $35^{\circ}C$. BV and ECF volume were measured with Evans' blue and sodium-thiocyanate dilution methods, respectively. Rectal and subcutaneous (as the skin) temperatures were measured by copper-constantan thermocouples. BFR were measured by a supersonic blood flow meter. With an increase in environmental temperature, skin temperature in buffaloes increased significantly than cows, but rectal temperature was not significantly different between two species. BV, especially plasma compartment, increased significantly in only buffaloes, while ECF volume did not change in both species. BFR increased significantly in buffaloes, but not in cows. From these results, the increased of BV may be caused by water flowing from ECF compartment. The water-shift may induce the increase of BFR and skin temperature. It is suggested in the present study that internal changes of blood compartment in buffaloes contribute to transfer of heat to the skin surface.

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

Martian Bow Shock and Magnetic Pile-Up Barrier Formation Due to the Exosphere Ion Mass-Loading

  • Kim, Eo-Jin;Sohn, Jong-Dae;Yi, Yu;Ogino, Tatsuki;Lee, Joo-Hee;Park, Jae-Woo;Song, Young-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.17-26
    • /
    • 2011
  • Bow shock, formed by the interaction between the solar wind and a planet, is generated in different patterns depending on the conditions of the planet. In the case of the earth, its own strong magnetic field plays a critical role in determining the position of the bow shock. However, in the case of Mars of which has very a small intrinsic magnetic field, the bow shock is formed by the direct interaction between the solar wind and the Martian ionosphere. It is known that the position of the Martian bow shock is affected by the mass loading-effect by which the supersonic solar wind velocity becomes subsonic as the heavy ions originating from the planet are loaded on the solar wind. We simulated the Martian magnetosphere depending on the changes of the density and velocity of the solar wind by using the three-dimensional magnetohydrodynamic model built by modifying the comet code that includes the mass loading effect. The Martian exosphere model of was employed as the Martian atmosphere model, and only the photoionization by the solar radiation was considered in the ionization process of the neutral atmosphere. In the simulation result under the normal solar wind conditions, the Martian bow shock position in the subsolar point direction was consistent with the result of the previous studies. The three-dimensional simulation results produced by varying the solar wind density and velocity were all included in the range of the Martian bow shock position observed by Mariner 4, Mars 2, 3, 5, and Phobos 2. Additionally, the simulation result also showed that the change of the solar wind density had a greater effect on the Martian bow shock position than the change of the solar wind velocity. Our result may be useful in analyzing the future observation data by Martian probes.