• Title/Summary/Keyword: Supersonic cold flow system

Search Result 20, Processing Time 0.035 seconds

A performance study and conceptual design on the ramp tabs of the thrust vector control (추력방향제어장치인 램 탭의 개념설계 및 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Soon-Jong;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF

Starting Characteristics of Supersonic Exhaust Diffuser for Altitude Simulation Testing (고공환경 모사를 위한 초음속 디퓨저의 시동 특성 분석)

  • Kim, Yong-Wook;Lee, Jung-Ho;Kim, Sang-Heon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2012
  • Upper stage propulsion system designed for operation in the upper atmosphere should be tested under nozzle full flow conditions to verify its performance on the ground. KARI has carried out high altitude simulation test of KSLV-I kick motor using cylindrical supersonic exhaust diffuser. Also cold and hot flow test for the sub-scaled diffuser have been conducted to verify the design of real scale diffuser and to study its operating characteristics. This paper deals with the results obtained from these high altitude simulation tests.

Study of Supersonic Jet Impinging on a Jet Deflector (제트 편향기에 충돌하는 초음속 제트에 관한 연구)

  • 이택상;정조순;신완순;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • In this paper, Supersonic jets impinging on a wedge were investigated in order to acquire fundamental design data for jet deflectors. Surface pressure distributions and pressure contours were obtained using a cold flow tester producing Mach 2 supersonic jets. Schlieren system was used to visualize the flow structure on the wedge surface. Numerical computations were performed and compared with the experimental results. Both results were in good agreement. The results showed that underexpansion ratio did not affect on the surface pressure distribution when the wedge is located at the nozzle exit. With increasing underexpansion ratio, pressure recovery decreased as the wedge is located farther from the nozzle exit. In the pressure contour, it was possible to locate the region where the peak pressure on the wedge surface was occurred.

  • PDF

Regenerative Cooling Channel Design of a Supersonic Combustor Considering High-Temperature Property of Fuel (연료 고온물성을 고려한 초음속 연소기 재생냉각 유로 설계)

  • Yang, Inyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.37-46
    • /
    • 2018
  • A design study on the cooling channel configuration in a regeneratively cooled supersonic combustor was performed. The flow parameters on the hot- and cold-side channels were calculated using a quasi-one-dimensional model. The heat transfer between these two sides was estimated as a part of the flow calculation. For the reference configuration, the total amount of heat exchanged was 10.7 kW, the heat flux was $566kW/m^2$, and the fuel temperature increase between the inlet and outlet was 153 K. Seven designs of the heat exchanger channel were compared for their heat transfer performance.

The Study of Aerodynamic Characteristics for the Ram-jet Projectile (렘제트탄의 공기역학적 특성 연구)

  • Park S. J.;Shin P. K.;Lee T. S.;Kim K. R.;Park J. H.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.751-754
    • /
    • 2002
  • The SFU(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (centerbody & pilot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}\;and\;4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.

  • PDF

An Experimental Study of Supersonic Underexpanded Jet Impinging on an Inclined Plate (경사 평판에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;윤현걸;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.67-74
    • /
    • 1999
  • Problems created by supersonic jet impinging on solid objects or ground arise in a variety of situations. For example multi-stage rocket separation, deep-space docking, V/STOL aircraft, jet-engine exhaust, gas-turbine blade, terrestrial rocket launch, and so on. These impinging jet flows generally contain a complex structures. (mixed subsonic and supersonic regions, interacting shocks and expansion waves, regions of turbulent shear layer) This paper describes experimental works on the phenomena (surface pressure distribution, flow visualization) when underexpanded supersonic jets impinge on the perpendicular, inclined plate using a supersonic cold-(low system. The used supersonic nozzle is convergent-divergent type, exit Mach number 2, The maximum on the plate when it was inclined was much larger than perpendicular plate, owing to high pressure recoveries through multiple shocks. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

The study of aerodynamic characteristics to design of optimum jetvane (제트베인 최적 설계를 위한 공기역학 특성 연구)

  • 신완순;길경섭;이택상;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.26-33
    • /
    • 2001
  • Thrust vector control system is control device which is mounted exit of the nozzle to generate pitch, yaw and roll directional force by deflecting flow direction of the supersonic jet from the nozzle. By obtaining control force, jetvane which is exposed in jet flow is working thermal and aerodynamic load. Axial thrust loss and side thrust is affected by shock patterns and interactions between jetvanes according to jetvane geometry and turning angle. In this study, we designed 6 types of jetvane to evaluate pitch, yaw and roll characteristics of ietvane in supersonic flow, and perform the cold flow test in range of turning angles of jetvanes between $0^{\cire}$ and $25^{\cire}$ by $5^{\cire}$ respectively. Also, calculation is going side by side to analyse flow interaction. Results show that there is no interactions between jetvanes upto turning angle 20$^{\circ}$, chord and lead length ratio is very important parameter to aerodynamic performance and maximum thrust loss is appeard to 17% of axial thrust in roll directional control.

  • PDF

Study on the Test Model With/Without of High-Altitude Test Facility for Hypersonic Propulsion (극초음속 추진기관 고공환경 시험장치 모델 유/무에 관한 연구)

  • Lee, Seongmin;Yu, Isang;Park, Jinsoo;Ko, Youngsung;Kim, Sunjin;Na, Jaejeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.632-636
    • /
    • 2017
  • In this study, we design an altitude test facility for hypersonic propulsion engine by constructing a test facility and cold flow test. Cold flow test is performed both with and without test models. The results show that the facility can simulate almost similar altitude condition without any significant change in pressure regardless of test models. We also constructed a database that might be useful for a variable test in the future.

  • PDF

A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector (기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구)

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

The Study of Aerodynamic Characteristics of Ram-jet with Different Intake (서로 다른 램제트 흡입구에 따른 공기역학적 특성 연구)

  • Park, Soon-Jong;Park, Jong-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.9-16
    • /
    • 2010
  • The SFRJ(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (center-body & pitot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}$ and $4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. Under mach 3.0, the center-body showed twice higher total pressure recovering ratio than the pitot type. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.