• Title/Summary/Keyword: Supersonic cold flow system

Search Result 20, Processing Time 0.022 seconds

An Experimental Study of Supersonic Underexpanded Jet Impinging on a Perpendicular Flat Plate (평판 위에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 1999
  • Impinging jets are observed when exhaust gases from missiles or V/STOL aircrafts impinge on the ground, flame deflector, ship deck, etc. The flow shows different patterns according to the nozzle geometry, nozzle-to-plate distance, and plate angle, for example. This paper describes experimental works on the phenomena (pressure distribution, occurrence of stagnation bubble, and so on.) when underexpanded supersonic jets impinge on a perpendicular flat plate using a supersonic cold-flow system, and compares the results with those obtained using a shock tunnel. The flow characteristics for the supersonic cold-flow system were also investigated. Surface pressure distribution of supersonic cold-flow system differed from that of shock tunnel because of water and temperature in the low-pressure chamber. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

A Study on the Performance of Ramp Tabs Asymmetrically Installed in the Supersonic Nozzle Exit (초음속 노즐 출구에 비대칭적으로 설치한 램프 탭의 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.934-939
    • /
    • 2007
  • Thrust vector control(TVC) is the method which generates the side force and moment by controlling the exhausting gas directly from the supersonic nozzle to change the trajectory of a missile quickly. In this paper, performance study on the tapered ramp tabs asymmetrically installed in the supersonic nozzle exhaust for the thurst vector control has been carried out using the supersonic cold flow system. To study the shock wave structure and location of the oblique shock wave produced by the ramp tab, the flow field visualization using the schlieren system is conducted. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Performance Study on the Supersonic Diffuser Contraction Ratio of High-Altitude Test Facility for Hypersonic Propulsion (극초음속 추진기관 고공환경 시험장치의 이차목 디퓨저 수축비에 따른 성능연구)

  • Lee, Seongmin;Shin, Donghae;Shin, Mingyu;Ko, Youngsung;Kim, Sunjin;Lee, Jungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1026-1030
    • /
    • 2017
  • In this study, we propose an supersonic diffuser that is one of test facilities for hypersonic propulsion engine, and conduct numerical analyses and cold flow test using each diffuser as the corresponding variable. Specifically, inner flow characteristics are computed based on mach number and pressure by the numerical analyses. Also, we test through cold flow test the pressure in the vacuum chamber and the inner pressure that is formed by the wall pressure. Finally, we compare the results from cold flow test and the numerical analyses, and report a preliminary result that might be useful to construct a better test facility of hypersonic propulsion engine in the future.

  • PDF

Recent Topics on Injection and Combustion in High Speed Flow (Keynote)

  • Tomioka, Sadatake
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.3-8
    • /
    • 2009
  • Wall flush mounted injector with various orifice shape and injection conditions, were examined to enhance jet penetration and mixing in supersonic cross flow, in view of application to air-breathing accelerator vehicle. Orifice shapes with high aspect ratio were found to preferable for better penetration in the cold flow, and in the reacting flow for scramjet-mode combustion conditions. However, the effectiveness of the high aspect ratio was diminished in the dual-mode combustion conditions. Supersonic injection was applied to the high aspect ratio orifice, and further increase in penetration was observed in the cold and reactive flow for scramjet-mode combustion conditions, however, mixing enhancement due to mixing layer / pseudo-shock wave system interaction was dominant in the dual-mode combustion conditions. Difficulty in attaining ignition in the case with the high aspect ratio orifice was encountered during the combustion tests.

  • PDF

Aerodynamic Characteristics of Supersonic Jets Impinging on $60^{\cire}$ Wedge (꼭지각이 $60^{\cire}$인 쐐기에 충돌하는 초음속 제트의 공기역학적 특성)

  • 박종호;이택상;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • Supersonic jets impinging on $60^{\cire}$ wedge were investigated to obtain fundamental design data for jet deflector It was of interest to study flow phenomena such as shock interaction and separation induced by shear layer. Experiments using supersonic cold flow system were conducted for Schlieren flow visualization and measurement of surface pressure. Numerical results were compared with the experimental results. The major parameters are underexpansion ratio, distance from nozzle to apex and design Mach number. Flow conditions were obtained for the wedge shock to attach on or detach from the wedge. The dominant feature of flow-field is shock pattern induced by the Interaction between the wedge shock and the barrel shock.

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

An experimental study on the characteristics of transverse jet into a supersonic flow field (초음속 유동장에서의 충돌제트 특성에 대한 실험적 연구)

  • 박종호;김경련;신필권;박순종;길경섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.124-131
    • /
    • 2003
  • When a secondary gaseous flow is injected vertically into a supersonic flow through circular nozzle, a complicated structure of flow field is produced around the injection area. The interaction between the two streams produces a strong bow shock wane on the upstream side of the side-jet. The results show that bow shock wave and turbulent boundary layer interaction induces the boundary layer separation in front of the side-jet. This study is to analyze the structure of flow fields and distribution of surface pressure on the flat plate according to total pressure ratio using a supersonic cold-flow system and also to study the control force of affected side-jet. The nozzle of main flow was designed to have Mach 2.88 at the exit. The injector has a sonic nozzle with 4mm diameter at the exit of the side-jet. In experiments, The oil flow visualization using a silicone oil and ink was conducted in order to analyze the structure of flow fields around the side-jet. The flow fields are visualized using the schlieren method. In this study, a computational fluid dynamic solution is also compared with experimental results.

A Study on Aerodynamic Characteristics with the Supersonic Nozzle Quantity (초음속노즐 수량 변화에 따른 공기역학적 특성의 연구)

  • Lee, Jong-Hoon;Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.54-58
    • /
    • 2015
  • The objective of this paper is to investigate the flow characteristics of the multi nozzle. The configurations of the single, the 3- and the 6-nozzle were selected under Mach number of 2.5. Under-expanded pressure ratio such as 1.2, 1.6 and 2.0 were selected to elucidate interference of the free jet. The flow visualization was carried out with the Schlieren system and a supersonic cold-flow system. Also, the flow characteristics were studied computationally with the density measurements. Reasonable agreement between experimental and theoric equation has been achieved qualitatively.

Performance Test of a Jet vane type Thrust Vector Control System (제트 베인형 추력편향장치의 성능시험)

  • 신완순;이정민;이택상;박종호;김윤곤;이방업
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.75-82
    • /
    • 1999
  • Theoretical analysis and performance test of Jet vane type Thrust Vector Control(TVC) were conducted using supersonic cold-flow system. The use of TVC Systems an in particular jet vanes, are currently being researched for use in air launch, ship launch, underwater launch and high altitude maneuvering of tactical missiles and rockets. The necessity to generate control forces to rapidly change the course of the missile is frequently required when traditional, exterior aerodynamic surfaces are unable to produce these forces, when the flow over the control surface is insufficient. This situation can occur at launch, or high angles of attack of the control surfaces. Jet vanes peformed well at all altitudes and environmental conditions, and jet vanes are extremely effective at deflection angles up to as high as $30^{\circ}$, make them ideal for the launch and maneuver applications. In this study, performance test of supersonic cold-flow system and visualization of supersonic jet was conducted, and shape and deflection angle effect of two types of jet vanes are investigated.

  • PDF