• Title/Summary/Keyword: Supersonic Nozzle Flow

Search Result 304, Processing Time 0.023 seconds

An experimental study on the characteristics of transverse jet into a supersonic flow field (초음속 유동장에서의 충돌제트 특성에 대한 실험적 연구)

  • 박종호;김경련;신필권;박순종;길경섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.124-131
    • /
    • 2003
  • When a secondary gaseous flow is injected vertically into a supersonic flow through circular nozzle, a complicated structure of flow field is produced around the injection area. The interaction between the two streams produces a strong bow shock wane on the upstream side of the side-jet. The results show that bow shock wave and turbulent boundary layer interaction induces the boundary layer separation in front of the side-jet. This study is to analyze the structure of flow fields and distribution of surface pressure on the flat plate according to total pressure ratio using a supersonic cold-flow system and also to study the control force of affected side-jet. The nozzle of main flow was designed to have Mach 2.88 at the exit. The injector has a sonic nozzle with 4mm diameter at the exit of the side-jet. In experiments, The oil flow visualization using a silicone oil and ink was conducted in order to analyze the structure of flow fields around the side-jet. The flow fields are visualized using the schlieren method. In this study, a computational fluid dynamic solution is also compared with experimental results.

Characteristics of Supersonic Jet Impingement on a Flat Plate

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.134-143
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

An Experimental Study on Supersonic Jet Issuing from Gas Atomizing Nozzle (I) (가스 미립화용 노즐로부터 방출되는 초음속 분류에 관한 실험적 연구)

  • Kim, Hui-Dong;Lee, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.697-709
    • /
    • 1996
  • Supersonic axisymmetric jets issuing from various kinds of nozzles with a throat diameter of a few millimeters were experimentally investigated. The exit Mach number and Reynolds number based on the throat diameter of nozzle were in the range of 1.0 ~ 5.9 and 8.4$\times$ $10^4$ ~ 2.9$\times$$10^6$, respectively. The nozzle pressure ratio was varied from 5 to 85. Present paper aims to offer fundamental information of the supersonic free-jets, with an emphasis to give data with which the shape of the free-jets can be depicted under a specified condition. Experimental data are summarized to enable an estimation of the shape of the supersonic free-jets. The result shows that the shape of free-jets is dependent on only the nozzle pressure ratio.

A Study of The Flow Characteristics through a Supersonic Dual Bell Nozzle (초음속 2단 벨노즐(SDBN)을 통하는 유동특성에 관한 연구)

  • 김희동;구병수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.70-77
    • /
    • 2000
  • Supersonic Dual Bell Nozzle (SDBN) is an altitude-adaptive propulsion nozzle achieved only by a nozzle wall inflection. In order to investigate the altitude adaptive capability and the effectiveness of this nozzle concept, the present study addresses a computational work of the flow through SDBN. Several types of the SDBNs are tested for a wide range of the pressure ratio which covers from an over-expended flow to a fully under-expended flow at the exit of the SDBN. Axisymmetric, compressible, Wavier-Stokes equations are numerically solved using a fully implicit finite volume differencing scheme. The present computational results reveal that the base nozzle length affects the shock wave system occurring inside SDBN. For a quit wide range of the pressure ratio the flow separation occurs at the nozzle inflection point. It is found that the maximum thrust coefficient is obtainable for the correct expansion state at the exit of SDBN.

  • PDF

A Numerical Analysis on the Nozzle-Rotor of a 3-D Supersonic Turbine (3차원 초음속 터빈의 노즐-로터 상호작용에 관한 수치적 연구)

  • Yun Won-Kun;Shin Bong-Gun;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.413-422
    • /
    • 2005
  • In this paper, numerical results for 3-D supersonic turbine flow have been firstly compared with the experimental results to verify results computed by $Fine^{TM}/Turbo$. It was found that $Fine^{TM}/Turbo$ can accurately predict flow characteristics within supersonic turbine. Next, an grid system for 3D turbine flow was optimized selected through grid independency test. Finally the effect of axial gap between rotor and nozzle and chamfer angle of blade edge on the flow characteristics within 3-D supersonic turbine was analyzed with Frozen Rotor method.

  • PDF

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF

An experimental study on the flow characteristics of a supersonic turbine with the cascade positions (익렬 위치에 따른 초음속 터빈의 유동 특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.265-271
    • /
    • 2007
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. Experiments were performed to find the flow characteristics of a supersonic turbine with the cascade positions and to find a factor of the expansion loss. The supersonic cascade with a 2-dimensional supersonic nozzle was tested with the cascade positions. The flow was visualized by a Z-type Schlieren system. The static pressures at the turbine cascade inlet and outlet were measured by pressure transducers and a pressure scanner. Also, The total pressures at the turbine cascade back flow were measured. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions of the supersonic turbine were observed. And the flow characteristics in the supersonic turbine with the cascade positions were observed.

  • PDF

A CFD study on the Supersonic Flow through a Dual Bell Nozzle

  • Gopalapillai, Rajesh;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.324-330
    • /
    • 2012
  • Dual bell nozzle is one of the most promising choices among the altitude adaptation nozzles. This facilitates having a forced, steady and symmetrical separation at lower altitudes and a controlled flow separation at the wall inflection point which prevents the generation of dangerous side loads. In order to ensure the attached flow in the second bell, a clear understanding of the flow transition is required. Hence the motivation of our study is to arrive at an optimum profile for the second bell, which allows a sudden and controlled transition. In this work, we designed the first bell using the conventional MoC and the second bell using an inverse MoC, imposing a pressure gradient constraint. A CFD analysis is also carried out. It is found that the separation point is near the inflection point within one fourth of the extension length or it is near the exit.

  • PDF

Schlieren Visualization of the Thrust Vector Flowfield in a Supersonic Two-Dimensional Nozzle (2차원 초음속 추력편향노즐을 이용한 쉴리렌 가시화 실험연구)

  • Jeong, Han-Jin;Choi, Seong-Man;Chang, Hyun-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.30-37
    • /
    • 2011
  • The thrust vectoring concept has been used for use in new advanced supersonic aircraft. This study presents the performance characteristics of the thrust vectoring nozzle by visualizing the shock behaviors with Schlieren method. The scaled models were designed and manufactured to see the shock behaviors of the various airflow condition. Also we executed experimental tests to see the geometrical effects of the thrust vector nozzle by changing pitch angle and length of pitch flaps. From this study we could understand the supersonic flow characteristics of the thrust vector nozzle. The total thrust of thrust vector nozzle is diminished by increasing the flap angle. But there is an optimum flap length ratio for attaining the highest thrust level and proper pitch effect.