• Title/Summary/Keyword: Superoxide ion

Search Result 84, Processing Time 0.022 seconds

Cytotoxicity of Water Fraction of Artemisia argyi against L1210 Cells and Antioxidant Enzyme Activities (황해쪽 물분획물의 L1210세포에 대한 세포독성과 항산화효소 활성변화)

  • 박시원;정대영
    • YAKHAK HOEJI
    • /
    • v.46 no.1
    • /
    • pp.39-46
    • /
    • 2002
  • The water fraction exhibiting anticancer activity was prepared from 70% methanol extract of Artemisis argyi by stepwise solvent partioning. This water fraction(5 $\mu$g/ml concentration) showed a considerable cytotoxicity against leukemic L1210 cells with a maximal value of 92% for 3 days culture. Contrastingly to such substantial anticancer activities the identical fraction showed far low toxicity against normal lymphocytes than chloroform fraction of Artemisia argyi mitomycine and 5-fluorouracil at every concentration ranging 0.01$\mu$g/ml~10.00$\mu$g/ml. The cytotoxicity displayed against L1210 cells by the water fraction of Artemisia was found to be proportinal to the decrease of viability of L1210 cells. On the other hand, $O_2$ion generation in L1210 cells appeared to be elevated in accordance to cytotoxicity by the water fraction with concurrent increases of superoxide dismuatse (SOD) and glutathione peroxidase (GPx) which are responsible for the conversion of $O_2$ ion and $H_2O$$_2$ respectively These findings taken together indicate that the death of L1210 cells by the water fraction of Auemisia atgyi, may be induced at least in part by the detrimental action of reactive oxygen species (ROS) including $O_2$- in spite of substantial extorts of SOD and GPx to overcome the attack of ROS.

The involvement of oxygen free radicals in the onset of aging (노화에 미치는 산소 유리라디칼에 관한 연구동향)

  • Kim, Jung-Sang;Na, Chang-Su;Kim, Young-Kon
    • Korean Journal of Oriental Medicine
    • /
    • v.3 no.1
    • /
    • pp.229-239
    • /
    • 1997
  • The superoxide anion radical$(O_2)$ poses a threat to macromocules and cell organelles of the living cells. This toxicity damage to all groups of proteins results in loss of enzyme function concerned with metabolism and ion transport, and peroxidation of unsaturated fatty acids and cholesterol results in a change of permeability characteristics of the membrane, and oxidative of nucleic acids results in genomic damage and thereby cause mutation, potential carcinogenesis and somatic damage that produce cellular aging Superoxide dismutase(SOD) has received substantial attention as a potential therapeutic agent. It has been investigated as a possible agent for the prevention of ontogenesis, the reduction of cytotoxic effect of anticancer drugs, and protection against damage in ischemic tissue. It is suggest that $O_2$ is concerned with cellular aging, thereafter we need to investigate herb that activated to SOD.

  • PDF

Effects of Dykellic Acid Derived from Microorganism on the Cell Growth and Superoxide Dismutase Activity in Tobacco Photomixotrophic Cultured Cells (미생물 유래 Dykellic Acid가 담배 녹색배양세포의 생장 및 Superoxide Dismutase 활성에 미치는 영향)

  • 곽상수;권혜경;권석윤;이행순;이호재;고영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.133-136
    • /
    • 2000
  • To evaluate the biological effects of dykellic acid, a novel apoptosis inhibitor, isolated from microorganism on the plant cells, the cell growth, protein contents, and superoxide dismutase (SOD) activity were investigated in suspension cultures of tobacco photomixotrophic cultured (PM) cells on 12 days after different concentration of chemical treatment. The cells were cultured in MS medium containing 0.7 mg/L 2,4-D, 0.3 mg/L kinetin, 30 g/L sucrose and 200 mM NaCl at $25^{\circ}C$ in the light (100 rpm). Dykellic acid strongly inhibited the cell growth by evaluating the cell fresh wt and the ion conductivity in the medium ($IC_{50}$/, about 20 $\mu$M). The results as inhibition of cell growth and cell wall damage were same. The compound significantly increased the protein contents and the SOD specific activity in proportion with the dosage. The results suggested that dykellic acid may have biological activity in plant cells and tobacco PM cells may be suitable biomaterials for in vitro evaluation of the biological activity of natural products.

  • PDF

Modification of Cu,Zn-Superoxide Dismutase by Oxidized Catecholamines

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.325-329
    • /
    • 2004
  • Oxidation of catecholamines may contribute to the pathogenesis of Parkinson's disease (PD). The effect of the oxidized products of catecholamines on the modification of Cu,Zn-superoxide dismutase (SOD) was investigated. When Cu,Zn-SOD was incubated with the oxidized 3,4-dihydroxyphenylalanine (DOPA) or dopamine, the protein was induced to be aggregated. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of catecholamines in the presence of copper ion. Radical scavengers, azide, N-acetylcysteine, and catalase inhibited the oxidized catecholamine-mediated Cu,Zn-SOD aggregation. Therefore, the results indicate that free radicals may play a role in the aggregation of Cu,Zn-SOD. When Cu,Zn-SOD that had been exposed to catecholamines was subsequently analyzed by an amino acid analysis, the glycine and histidine residues were particularly sensitive. These results suggest that the modification of Cu,Zn-SOD by oxidized catecholamines might induce the perturbation of cellular antioxidant systems and led to a deleterious cell condition.

Contradictory Effects of Superoxide and Hydrogen Peroxide on $K_{Ca}3.1$ in Human Endothelial Cells

  • Choi, Shinkyu;Na, Hye-Young;Kim, Ji Aee;Cho, Sung-Eun;Suh, Suk Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • Reactive oxygen species (ROS) are generated in various cells, including vascular smooth muscle and endothelial cells, and regulate ion channel functions. $K_{Ca}3.1$ plays an important role in endothelial functions. However, the effects of superoxide and hydrogen peroxide radicals on the expression of this ion channel in the endothelium remain unclear. In this study, we examined the effects of ROS donors on $K_{Ca}3.1$ expression and the $K^+$ current in primary cultured human umbilical vein endothelial cells (HUVECs). The hydrogen peroxide donor, tert-butyl hydroperoxide (TBHP), upregulated $K_{Ca}3.1$ expression, while the superoxide donors, xanthine/xanthine oxidase mixture (X/XO) and lysophosphatidylcholine (LPC), downregulated its expression, in a concentration-dependent manner. These ROS donor effects were prevented by antioxidants or superoxide dismustase. Phosphorylated extracellular signal-regulated kinase (pERK) was upregulated by TBHP and downregulated by X/XO. In addition, repressor element-1-silencing transcription factor (REST) was downregulated by TBHP, and upregulated by X/XO. Furthermore, $K_{Ca}3.1$ current, which was activated by clamping cells with 1 ${\mu}M$ $Ca^{2+}$ and applying the $K_{Ca}3.1$ activator 1-ethyl-2-benzimidazolinone, was further augmented by TBHP, and inhibited by X/XO. These effects were prevented by antioxidants. The results suggest that hydrogen peroxide increases $K_{Ca}3.1$ expression by upregulating pERK and downregulating REST, and augments the $K^+$ current. On the other hand, superoxide reduces $K_{Ca}3.1$ expression by downregulating pERK and upregulating REST, and inhibits the $K^+$ current. ROS thereby play a key role in both physiological and pathological processes in endothelial cells by regulating $K_{Ca}3.1$ and endothelial function.

Zinc(II) ion promotes anti-inflammatory effects of rhSOD3 by increasing cellular association

  • Kim, Younghwa;Jeon, Yoon-Jae;Ryu, Kang;Kim, Tae-Yoon
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • Recently, we demonstrated that superoxide dismutase 3 (SOD3) is a strong candidate for biomedicine. Anti-oxidant function of SOD3 was accomplished without cell penetration, and it inhibited the inflammatory responses via non-enzymatic functions. SOD3 has the heparin binding domain associating cell surface. Interestingly, we found that $Zn^{2+}$ promotes transduction effects of recombinant human SOD3 (rhSOD3) by increasing uptake via the heparin binding domain (HBD). We demonstrated an uptake of rhSOD3 from media to cell lysate via HBD, resulting in an accumulation of rhSOD3 in the nucleus, which was promoted by the presence of $Zn^{2+}$. This resulted in increased inhibitory effects of rhSOD3 on NF-{\kappa}B and STAT3 signals in the presence of $Zn^{2+}$, which shows elevated association of rhSOD3 into the cells. These results suggest that an optimized procedure can help to enhance the inflammatory efficacy of rhSOD3, as a novel biomedicine.

Cytotoxicity of Methanol Extract of Edible Herbs Against L1210 Cells with the Changes of Antioxidant Enzymes Activities (식용 허브 메탄올추출물의 L1210 암세포에 대한 세포독성과 항산화효소 활성 변화)

  • Kim, Soo-Jin;Cho, Yong-Sun;Park, Sie-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.4 s.131
    • /
    • pp.376-383
    • /
    • 2002
  • The methanol extracts prepared from ten kinds of culinary herbs were investigated for the cytotoxcic effect againt L1210 cancer cells and the mode of action. The substantial cytotoxic effects were observed in all cases with the most prominent effect demonstrated by lemon verbena extract showing $87{\pm}4.1%$ cytotoxicity with $100{\mu}g/ml$ concentration and 3 days culture period. The cytotoxic effect was found to be dose and culture period dependent. With respect to the mechanism of the cytotoxicity, the augmented generation of $O_2{^-}ion$ and the dramatically escalated activities of antioxidant enzymes such as superoxide dismutase(SOD) and glutathione peroixdase (GPx) with addition of the herb methanol extractw suggested that there would be the involvement of reactive oxygen species (ROS) metabolism in the course of L1210 cancer cell death by the mothanol extract of the edible herbs.

Pharmacological, Toxicological Studies of Antitumor Polysaccharides Obtained from Ganoderrna lucidurn IY 009 (Ganoderma lucidum IY 009로 부터 분리된 항암성 다당류의 약리 및 독성)

  • Lee, Kweon-Haeng;Lee, Chong-Ock;Lee, June-Woo;Jeong, Hoon;Han, Man-Deuk;Jeong, June-Ho;Oh, Doo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.182-189
    • /
    • 1994
  • The highest antitumor activity was observed in water soluble AS fraction of the Ganoderma lucidum IY 009. AS fraction did not show any cytotoxicity on sarcoma 180 cell but stimulated antibody production, opsonization of macrophage in ICR mouse and superoxide ion production from isolated macrophage. AS fraction activated complement C3 in human serum, and their antitumor activity was inhibited by EDTA, a chelator of cation related complementary activation. AS fraction exerted om prolong of life span and ingibition of tumor growth in the leukemia P388 or L1210 transplanted inbreed mouse,k BDF1 but krestin did not. AS fraction did not show any serious and lethal effects through oral administration on ICR mouse, and LD$_{50}$ of those was above 2,230 mg/kg.

  • PDF

Effect of Pyrroloquinoline Quinone on Osteoclast Generation and Activity (Pyrroloquinoline quinone이 파골세포의 생성 및 활성에 미치는 영향)

  • Ko, Seon-Yle;Han, Dong-Ho;Kim, Jung-Keun
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.3
    • /
    • pp.329-336
    • /
    • 2005
  • We examined the effect of PQQ, as a scavenger of superoxide, on osteoclast-like cell formation and on mature osteoclast function. To determine whether PQQ scavenges the superoxide, nitroblue tetrazolium (NBT) staining, which is a method to detect superoxide, was performed on HD-11 cells which are a chick myelomonocytic cell line having tartrate-resistant acid phosphatase (TRAP) activity in response to 1,25-dihydroxyvitamin $D_3\;[1,25(OH)_2D_3]$. Histochemical study of TRAP was also performed on HD-11 cells. PQQ inhibited the TRAP-positive multinucleated cell formation of chicken bone marrow cells was also examined. The addition of 20 ${\mu}M$ PQQ inhibited the formation of TRAP-positive multinucleated cell. When chicken osteoclasts were cultured on dentin slices, treatment of 20 ${\mu}M$ PQQ resulted in a significant decrease in dentin resorption by osteoclasts in terms of total resorption area and number of resorption pits. The present data suggest that PQQ, possibly as a scavenger of superoxide ion, inhibits the osteoclastic differentiation and bone resorption.

Expression and Characterization of Recombinant Human Cu,Zn-Superoxide Dismutase in Escherichia coli

  • Kang, Jung-Hoon;Choi, Bong-Jin;Kim, Sung-Moon
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 1997
  • Expression of human Cu.Zn-superoxide dismutase (SOD) with activity comparable to human erythrocyte enzyme was achieved in E. coli B21(DE3) by using the pET-17b expression vector containing a T7 promoter. Recombinant human SOD was found in the cytosol of disrupted bacterial cells and represented > 25% of the total bacterial proteins. The protein produced by the E. coli cells was purified using a combination of ammonium sulfate precipitation, Sephacryl S-100 gel filtration and DEAE-Sephacel ion exchange chromatography. The recombinant Cu,Zn-SOD and human erythrocyte enzyme were compared using dismutation activity, SDS-PAGE and immunoblotting analysis. The mass of the subunits was determined to be 15,809 by using a electrospray mass spectrometer. The copper specific chelator. diethyldithiocarbamate (DOC) reacted with the recombinant Cu,Zn-SOD. At $50{\mu}M$ and $100{\mu}M$ concentrations of DOC, the dismutation activity was not inhibited for one hour but gradually reduced after one hour. This result suggests that the reaction of DOC with the enzyme occurred in two distinct phases (phase I and phase II). During phase I of this reaction, one DOC reacted with the copper center, with retention of the dismutation activity while the second DOC displaced the copper, with a loss of activity in phase II.

  • PDF