• Title/Summary/Keyword: Superoxide dismutase activity (SOD)

Search Result 1,150, Processing Time 0.026 seconds

Anaerobic Respiration of Superoxide Dismutase-Deficient Saccharomyces cerevisiae under Oxidative Stress

  • Lee, Sun-Mi;Nam, Doo-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.15-18
    • /
    • 1998
  • The entanol productivity of superoxide dismutase (SOD)-deficient mutants of Saccharo-Myces cerevisiae was examined under the oxidative stress by Paraquat. It was observed that MnSOD-deficient mutant of S. cerevisiae had higher ethanol productivity than wild type or CuZnSOD-deficient yeast both in aerobic and in anaerobic culture condition. Pyruvated dehydrogenase activity decreased by 35% and alcohol dehydrogenase activity increased by 32% were observed in MnSOD-deficient yeast grown aerobically. When generating oxygen radicals by Paraquat, the ehanol productivity was increased by 40% in CuZnSOD-deficient or wild strain, resulting from increased activity of alcohol dehydrogenase and decreased a activity of pyruvate dehydrogenase. However, the addition of ascorbic acid with Paraquat returned the enzyme activities at the level of control. These results imply that SOD-deficiency in yeast strains may cause the metabolic flux to shift into anaerobic ethanol fermentation in order to avoid their oxidative damages by Paraquat.

  • PDF

The Detection of Superoxide Dismutase Activity and Isozyme Pattern of Panax ginseng C.A. Meyer Leaves (인삼엽에서 Superoxide Dismutase Activity 측정 및 Isozyme Pattern 검정)

  • Yang, Deok-Jo;Kim, Myeong-Sik;Lee, Seong-Jong
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.24-31
    • /
    • 1987
  • We studied a assay method on the measurement of superoxide dismutase (SOD Superoxide : superoxide oxidoreductase, EC. 1. 15. 1. 1) activity with photoreduced flavin and nitroblue tetrazolium (NBT) as superoxide (${O_2}^{-}$) source and detector, respectively. The $\Delta$E (1000 ng SOD$.$$min.)^{-1}$ of photoreduced flavin-NBT system was 0.08, whereas that of xanthine-xanthine-cytochrome system used broadly in experiments was 0.014. Therefore, the new method was regarded more simple and utilizable than xanthine-xanthine cytochrome system method. In the present paper, we also carried out to investigate the SOD activity and isozyme pattern for the parpose of study of leaf-burning disease in ginseng (Panax ginseng C.A. Meyer) leaves.

  • PDF

Thermostability of Superoxide Dismutase from Cucumber(Cucumis sativa) (오이 추출물에 존재하는 Superoxide Dismutase의 열안정성)

  • 박인식;김은애;김기남;길지은;이민경;김석환;서정식
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1105-1109
    • /
    • 1998
  • The superoxide dismutase(SOD) in peeled pericarp of cucumber was most stable at pH 8.0 and relatively stabe between pH 5.0 and 9.0. The enzyme was stable up to 6$0^{\circ}C$ and retained 12% by heat treatment at 10$0^{\circ}C$ for 5 min. At pH 2.0, the peeled pericarp enzyme activity was decreased to 10% by incubation for 3 hrs. However, the enzyme activity was increased above 25% after incubating the enzyme at pH 7.0 for 6 hrs. Retention of SOD activity in cucumber by various heating methods was also measured. The residual SOD activities of peeled pericarp and whole cucumber was estimated to be 25% and 27% after blanching(2 min), respectively. The skin enzyme retained 53% of its activity after steaming (3 min). When the peeled pericarp enzyme was incubated at 4$^{\circ}C$ for 20 days, the enzyme activity remained about 81%. However, when the enzyme incubated at 3$0^{\circ}C$ for 20 days, the peeled pericarp enzyme activity decreased to 17% of its original activity. The enzyme activity of peeled pericarp cucumber was not changed after exhaustive dialysis for 3 days, which indicated that the SOD activity in cucumber seems to have molecular weight above 12,000.

  • PDF

False Positive SOD Activity of Bifidobacterium spp. Grown in MRS Medium

  • Chang, Woo-Suk;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.305-309
    • /
    • 1998
  • The superoxide dismutase (SOD) activity of seven Bifidobacterium spp. strains was examined by an indirect SOD assay method. Some Bifidobacterium spp. showed significant levels of SOD activity. However, we could not observe any significant differences between anaerobic and aerobic cultures. Furthermore, although several Bifidobacterium spp. exhibited some degree of tolerance to paraquat which produces superoxide radicals, the apparent SOD activity of these strains was not correlated with their resistance to paraquat. In addition, when we added increasing amounts of manganese or iron to MRS medium which had been prepared without either of the metal ions, the apparent SOD activity of cell free extracts (CFEs) was increased with increasing concentration of both metal ions. To our surprise, the heat-denatured CFEs also showed nearly identical correlative patterns. Based on these results, the apparent SOD activity was likely due to a nonenzymatic dismutation. These results strongly suggest that high concentration of divalent metal ions ($Mn^{2+}$, $Fe^{2+}$) in MRS medium result in nonenzymatic dismutation which can lead to false positive SOD activities in Bifidobacerium spp.

  • PDF

Expression and Purification of Recombinant Superoxide Dismutase (PaSOD) from Psychromonas arctica in Escherichia coli

  • Na, Ju-Mee;Im, Ha-Na;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2405-2409
    • /
    • 2011
  • The psychrophilic bacteria Psychromonas arctica survives at subzero temperatures by having adapted several protective mechanisms against freezing and oxidative stresses. Many reactive oxygen species are likely generated in P. arctica as a result of reduced metabolic turnover rates. A previous study identified the pasod gene for superoxide dismutase from P. arctica using a series of PCR amplifications. Here, upon cloning into a His-tag fused plasmid, the sod gene from P. arctica (pasod) was successfully expressed by IPTG induction. His-tagged PaSOD was subsequently purified by $Ni^{2+}$-NTA affinity chromatography. The purified PaSOD exhibited a higher SOD activity than that of Escherichia coli (EcSOD) at all temperatures. The difference in activity between PaSOD and EcSOD becomes even more significant at 4$^{\circ}C$, indicating that PaSOD plays a functional role in the cold adaptation of P. arctica in the Arctic.

Effects of Green Tea Catechins on the Lipid Peroxidation and Superoxide Dismutase (녹차카테킨이 지질과산화 및 Superoxide Dismutase에 미치는 영향)

  • 강원식;이윤희;정현희;강민경;김택중;홍진태;윤여표
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2001
  • The purpose of this study was to elucidate the effects of green tea catechins (GTC) on the lipid peroxidation and superoxide dismutase (SOD). GTC showed the high SOD activity, while sitgnificantly inhibited the peroxide value of linoleic acid (93%) and lipid peroxidation (84%) from rat liver microsomal fraction induced by Fe$^{2+}$ascorbate system. The effects of GTC on the SOD and catalase activities, and lipid peroxidation after oral administration were investigated. GTC (50 mg/kg) significantly increased SOD (62%) and catalase activities (75%), while significantly inhibited the lipid peroxidation (52%) of rat liver microsome in a dose-dependent manner. These results suggest that GTC has the antioxidative effect which is rotated to the prevention of aging and cancer.r.

  • PDF

Activity of Superoxide dismutase(SOD) by fermented soybean (발효 대두 식품의 Superoxide dismutase(SOD) 활성)

  • 류병호;박종옥;김의숙;임복규
    • Journal of Life Science
    • /
    • v.11 no.6
    • /
    • pp.574-581
    • /
    • 2001
  • This study was performed to evaluate the inhibition effects of fermented soybean on lipid perosidation and antioxidative relative enzyme activity. in vivo. Fermented soybean was induced the high SOD activity, while significantly inhibited on the peroxide value of linoleic acid and lipid perxidation from rat microsome induced by Fe$^{2+}$ ascorbate system, Sprague-Dawley(SD) male rats were fed basic diet, and experimental diets group added 200 or 500 mg/kg fermented soybean for 2 weeks. The effect of fermented soybean is also significantly increased catalase and glutathione peroxidase activities, while significantly inhibited the lipid peroxidation of rat liver microsome in a dose dependent manner. Therefore, these results suggest that fermented soybean has antioxidative activity which is related enzyme to prevention of oxidative stress.s.

  • PDF

Effects of Red Ginseng on the Lipid Peroxidation of Erythrocyte and Antioxidant Superoxide Dismutase (SOD) Activity In NIDDM Patients (인슐린비 의존성 당뇨병 환자에서 출상이 적혈구의 지질과산화 및 항산화효소 슈퍼옥시드 디스뮤타제에 미치는 영향)

  • 최경묵;이은종
    • Journal of Ginseng Research
    • /
    • v.21 no.3
    • /
    • pp.153-159
    • /
    • 1997
  • Living organisms have antioxidant enzymes, such as superoxide dismutase, catalase SE glutathione peroxidase, that protect themselves from the toxic effect of superoxide free radicals. Some report says that intracellular oxidation stress is involved in pathogenesis of chronic complications of diabetes mellitus. This study was performed to evaluate the effect of red ginseng on lipid peroxidation of red blood cell and antioxidant SOD activity of serum in NIDDM patients. As a result, there were trends for decrease of lipid peroxidases of RBC and Increase of SOD activity of serum in ginseng group but that were not statistically significant. Therefore, we suggest long term and large sized control study is necessary to confirm the protective effects of red ginseng on oxidative damage in NIDDM patients.

  • PDF

Nucleus-DNA Damage and Different Response of Plant Cells to Paraquat in Relation to Enzyme Activity of Superoxide Dismutase. (Superoxide dismutase의 활성차이에 따른 식물세포의 paraquat에 대한 반응과 핵 DNA 손상 검정)

  • 권순태;이명현;오세명;정도철;김길웅
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.614-619
    • /
    • 2004
  • This study was undertaken to investigate the different responses of cultured plant cells to paraquat treatment and nucleus-DNA damage in relation to enzyme activity of superoxide dismutase (SOD). Furthermore, this study was also carried out to understand the antioxidative mechanism of plant cells to environmental stress. We selected two different species of plant cultured cells, Ipomoea batatas as high-SOD species and Lonicera japonica as low-SOD species. The total activity and specific activity of SOD in a chlorophyllous cell of I. batatas were 3,736 unit/gㆍfresh weight and 547 unit/mgㆍprotein, respectively, and those in L. japonica were 23 unit/gㆍfresh weight and 13 unit/mgㆍprotein, respectively SOD activity in chlorophyllous I. batatas cells reached its maximum level at 10 to 15 days after subculture, whereas that in L. japonica remained at a very low SOD level during the whole period of subculture. In comparison to L. japonica, I. batatas, a high-SOD species, showed high tolerance to paraquat 10 and 50 mg/l treatment in terms of cell viability and electrolyte leakage. Based on the result of comet assay, the nucleus-DNA damage of two species by paraquat 50 mg/l treatment was not significantly different. However, I. batatas cells repaired their damaged DNA more effectively than the cells of the low-SOD species, L. japonica.

Study on the Intracellular Superoxide Dismutase Produced by Bacillus circulans (Bacillus circulans가 생산하는 Superoxide Dismutase에 관한 연구)

  • Lee, Sang-Ok;Tae-Ho Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.381-387
    • /
    • 1987
  • Distribution of superoxide dismutase (SOD) which catalyzes the dismutation of superoxide radicals to hydrogen peroxide and oxygen has been examined in various genera of bacteria. SOD was produced by various bacteria independent of genus and species with variation in superoxide dismutase activity of each bacteria. Bacillus circulans which produced relatively large amount of SOD was selected and used to investigate the optimum culture conditions and further studies. The compositions of optimum culture medium for the enzyme production were 1% glucose, 2% polypeptone, 0.l% NaCl, and 0.2mM of methyl viologen and initial pH was 6.0. The highest enzyme production was observed after 20 hours of cultivation at 3$0^{\circ}C$ on a reciprocal shaker. The enzyme activity was maintained stably for a relatively long period by the addition of 5% ethanol in pH 5.0, 0.01M acetate buffer.

  • PDF