• Title/Summary/Keyword: Superoxide dismutase (SOD1)

Search Result 1,128, Processing Time 0.028 seconds

Antioxidant Effects of Tocotrienol in Rice Bran (미강 함유 Tocotrienol의 항산화 효과)

  • Woo Ki-Min;Lee Young-Sang;Kim Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.spc1
    • /
    • pp.4-7
    • /
    • 2005
  • The pharmaceutical function of tocotrienol in rice bran was evaluated. Distinctive antioxidative effects by 1,1-diphenyl-2-picrylhydrazyl(DPPH) could be observed. Also, Superoxide Dismutase(SOD) and Glutathione Peroxidase(GPX) activities of the cultured cells such as human firbroblast and hepatocyte, were increased up to 2 fold by the treatment of tocotrienol. The effects on GPX activity were more evident than SOD activity, and the stimulation was up to 2 fold. The changes of gene expression patterns were examined by applying the cell extracts of fibroblast treated with the increasing concentrations of tocotrienol on two-dimensional gel electrophoresis(2-D gel electrophoresis). As the concentrations increasing, many proteins began to appear with the increasing amounts, while several proteins diminished or disappeared. From these results, tocotrienol was clearly shown to have abilities on protecting any oxidizing damages and stimulating anti-oxidizing activities of the organisms.

Studies on the Physiological Characteristics and Cambial Electrical Resistance of Street Trees in Cheonan City (천안시 가로수의 생리적 특성과 형성층 전기저항치에 관한 연구1)

  • 송근준;한심희;하태주
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • This study was conducted to diagnose the health of street trees with physiological characters, and to figure out the relation of physiological characters and cambial electrical resistances. Ginkgo biloba, Prunes serrulata and Salix koreensis were chosen in the Cheonan City. Soils under trees were collected to analyze dehydrogenase activities, and chlorophyll content, nitrate reductase and superoxide dismutase activities were analyzed from leaves sampled at the edge of crown in July. Cambial electrical resistances were measured in May, July and September, Soils with low dehydrogenase activity reflected the level of pollution. Chlorophyll content was the lowest in the leaves of P. serrulata at the Dongseo-street. Nitrate reductase activity of Ginkgo biloba was higher than P. serruluta and Satix koreensis. Nitrate reductase activity showed higher activity in the city than control(Independence Hall and Yonam College), but superoxide dismutase activity in the city lower than control. P. serruzatu in the Dongseo-street that cambial electrical resistance increase continuously during the growing season, showed the loss of vitality Cambial electrical resistance was negatively or positively correlated with nitrate reductase($r^2$=-0.566) and superoxide dismutase activity($r^2$=0.579). It was concluded that cambial electrical resistance might be suitable for diagnosing the tree health.

Effect of Cyclobuxine on Oxygen Free Radical Production and Cellular Damage Promoted by Arachidonate in Perfused Rat Hearts (허혈재-관류 적출심장에서 Arachidonic Acid에 의한 산소래디칼 생성 및 심근손상에 대한 Cyclobuxine의 영향)

  • Lee, Jong-Hwoa;Kwon, Jun-Tack;Cho, Byung-Heon;Park, Jong-An;Kim, Yu-Jae;Kim, Jong-Bae;Cha, Young-Deog;Kim, Chang-Ho
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.163-170
    • /
    • 1992
  • The present study was attempted to investigate the effect of cyclobuxine (a steroidal alkaloid) on generation of reactive oxygen metablite and myocardial damage promoted by an exogenous administeration of arachidonate in ischemic-reperfused hearts. Langendorff preparation of the isolated rat heart was made ischemic condition by reducing the flow rate to 0.5 ml/min for 45 min, and then followed by normal reperfusion (7 ml/min) for 5 min. The generation of superoxide anion was estimated by measuring the SOD-inhibitable ferricytochrome C reduction. The degree of lipid peroxidation in myocardial tissue was estimated from the tissue malondialdehyde (MDA) concentration using thiobarbituric acid method. The myocardial cell damage was observed by measuring LDH released into the coronary effluent. Sodium arachidonate $(0.1\;and\;1.0\;{\mu}g/ml)$ infused during the period of oxygenated reperfusion stimulated superoxide anion production dose-dependently. The rate of arachidonate-induced superoxide anion generation was markedly inhibited by cyclobuxine $(1.0\;and\;10\;{\mu}g/ml)$. The production of malondialdehyde was increased by infusion of arachidonate. This increase was prevented by superoxide dismutase (300 U/ml) and cyclobuxine $(1.0\;and\;10\;{\mu}g/ml)$. The release of LDH was increased by sodium arachidonate was also inhibited by superoxide dismutase and cyclobuxine. In conclusion, the present results suggest that cyclobuxine inhibits the production of reactive oxygen metabolite and myocardial damages which were promoted by an administeration of arachidonate during reperfusion of ischemic hearts.

  • PDF

Fenofibrate decreases radiation sensitivity via peroxisome proliferator-activated receptor ${\alpha}$-mediated superoxide dismutase induction in HeLa cells

  • Liu, Xianguang;Jang, Seong-Soon;An, Zhengzhe;Song, Hye-Jin;Kim, Won-Dong;Yu, Jae-Ran;Park, Woo-Yoon
    • Radiation Oncology Journal
    • /
    • v.30 no.2
    • /
    • pp.88-95
    • /
    • 2012
  • Purpose: The fibrates are ligands for peroxisome proliferator-activated receptor (PPAR) ${\alpha}$ and used clinically as hypolipidemic drugs. The fibrates are known to cause peroxisome proliferation, enhance superoxide dismutase (SOD) expression and catalase activity. The antioxidant actions of the fibrates may modify radiation sensitivity. Here, we investigated the change of the radiation sensitivity in two cervix cancer cell lines in combination with fenofibrate (FF). Materials and Methods: Activity and protein expression of SOD were measured according to the concentration of FF. The mRNA expressions were measured by using real time reverse-transcription polymerase chain reaction. Combined cytotoxic effect of FF and radiation was measured by using clonogenic assay. Results: In HeLa cells total SOD activity was increased with increasing FF doses up to 30 ${\mu}M$. In the other hand, the catalase activity was increased a little. As with activity the protein expression of SOD1 and SOD2 was increased with increasing doses of FF. The mRNAs of SOD1, SOD2, $PPAR{\alpha}$ and $PPAR{\gamma}$ were increased with increasing doses of FF. The reactive oxygen species (ROS) produced by radiation was decreased by preincubation with FF. The surviving fractions (SF) by combining FF and radiation was higher than those of radiation alone. In Me180 cells SOD and catalase activity were not increased with FF. Also, the mRNAs of SOD1, SOD2, and $PPAR{\alpha}$ were not increased with FF. However, the mRNA of $PPAR{\gamma}$ was increased with FF. Conclusion: FF can reduce radiation sensitivity by ROS scavenging via SOD induction in HeLa. SOD induction by FF is related with $PPAR{\alpha}$.

Antioxidant Property of the Gagam-Hyungbang-Gihwang-tang Using Biochemical Markers of Carcinogenesis (가감형방지황탕 열수 추출물이 항산화 작용에 미치는 영향)

  • Han Jin-Soo;Park Seong-Sik
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.204-214
    • /
    • 2005
  • Objectives : The verity extract of the Gagam-Hyungbang-Gihwang-tang (GHG) was assessed to determine the mechanisms of its antioxidant activity. Methods : The fellowing effects were measured : GHG exhibited a concentration-treatment; scavenging ${\alpha},\;{\alpha}-diphenyl-\beta-picrylhydrazyl$ (DPPH) radical, linoleic acid oxidation in a thiocyanate assay system, and superoxide anion, hydroxyl radical-induced DNA nicking. We investigated mRNA levels such as superoxide-dismutase. Results : The GHG extract showed dose-dependent free radical scavenging activity, including DPPH radicals, hydroxyl radicals, and superoxide anion, using different systems. The GHG was also found to be effective in protecting plasmid DNA against the strand breakage induced by hydroxyl radicals in Fenton's reaction mixture. Furthermore, SOD-1 mRNA expression levels increased in tat hepatoma H4IIE cells Conclusions : We expect that GHG will to helpful to the development of antioxidant activity treatments.

  • PDF

Hypoxia-inducible factor: role in cell survival in superoxide dismutase overexpressing mice after neonatal hypoxia-ischemia

  • Jeon, Ga Won;Sheldon, R. Ann;Ferriero, Donna M.
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.12
    • /
    • pp.444-449
    • /
    • 2019
  • Background: Sixty percent of infants with severe neonatal hypoxic-ischemic encephalopathy die, while most survivors have permanent disabilities. Treatment for neonatal hypoxic-ischemic encephalopathy is limited to therapeutic hypothermia, but it does not offer complete protection. Here, we investigated whether hypoxia-inducible factor (HIF) promotes cell survival and suggested neuroprotective strategies. Purpose: HIF-1α deficient mice have increased brain injury after neonatal hypoxia-ischemia (HI), and the role of HIF-2α in HI is not well characterized. Copper-zinc superoxide dismutase (SOD)1 overexpression is not beneficial in neonatal HI. The expression of HIF-1α and HIF-2α was measured in SOD1 overexpressing mice and compared to wild-type littermates to see if alteration in expression explains this lack of benefit. Methods: On postnatal day 9, C57Bl/6 mice were subjected to HI, and protein expression was measured by western blotting in the ipsilateral cortex of wild-type and SOD1 overexpressing mice to quantify HIF-1α and HIF-2α. Spectrin expression was also measured to characterize the mechanism of cell death. Results: HIF-1α protein expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, HIF-2α protein expression increased 30 minutes after HI injury in the wild-type and SOD1 overexpressing mouse cortex and decreased to baseline value at 24 hours after HI injury. Spectrin 145/150 expression did not significantly change after HI injury in the SOD1 overexpressing or wild-type mouse cortex. However, spectrin 120 expression increased in both wild-type and SOD1 overexpressing mouse at 4 hours after HI, which decreased by 24 hours, indicating a greater role of apoptotic cell death. Conclusion: HIF-1α and HIF-2α may promote cell survival in neonatal HI in a cell-specific and regional fashion. Our findings suggest that early HIF-2α upregulation precedes apoptotic cell death and limits necrotic cell death. However, the influence of SOD was not clarified; it remains an intriguing factor in neonatal HI.

The Effect of Red Ginseng Extract on Superoxide Dismutase Activity in the Kidney of Gamma-ray Irradiated Mice (홍삼 투여가 방사선에 조사된 생쥐 신장의 Superoxide Dismutase에 미치는 영향)

  • Park, Yong-Soon
    • Journal of radiological science and technology
    • /
    • v.15 no.1
    • /
    • pp.123-130
    • /
    • 1992
  • This study was prepared to observe the change of enzyme activities in kidney treated with red ginseng extract in the gamma ray irradiated mice. Determine the activity of SOD, peroxidase, catalase in the kidney a period of 1 day, 2 day, 3 day, 4 day, 5 day after a saline injection or injection of red ginseng extract or gamma ray irradiatied group into four classify. The activity SOD and catalase showed a tendency to increase and recovery at the early state but pay no regard. Wherease, the activity of peroxide restored and increased pay regard. A physiological saline injection group after gamma ray irradiation showed a tendency to diminish after remakable increase of activity of SOD, peroxidase and catalase than control group. Injection group of red ginseng extract after gamma ray irradiation observed rapid recovery on activity of SOD, peroxidase, catalase than a saline injection group. Experimental result suggested that injection of red ginseng extract after irradiation have the recovery effect on the changed of activity of SOD, peroxidase and catalase against radiation injury.

  • PDF

Oxidative Stress Response of the Abalone Haliotis discus hannai Acute Exposed to Nickel Chloride (NiCl2) (염화니켈 (NiCl2) 급성노출에 따른 북방전복 Haliotis discus hannai의 산화스트레스 반응)

  • Kim, Suji;Kim, Kyeong Mi;Kang, So Young;Lee, Jung Sick
    • The Korean Journal of Malacology
    • /
    • v.31 no.4
    • /
    • pp.285-290
    • /
    • 2015
  • This study was conducted to investigate the effects of nickel chloride ($NiCl_2$) exposure on oxidative stress of the abalone Haliotis discus hannai. Experimental groups were composed of one control condition and five nickel chloride exposure conditions (5.9, 8.8, 13.3, 20.0, 30.0 mg/L). Superoxide dismutase (SOD) activity was increased in the foot and hepatopancreas, but decreased in the gill. Catalase (CAT) activity was increased in all exposure groups except 20.0 mg/L and 30.0 mg/L. In the gill, CAT activity was similar to the control group for all exposure groups. In the hepatopancreas, CAT activity was increased compared with the control group. However SOD and CAT activity showed not significant differences (P > 0.05).

Effects of Biphenyldimethyl dicarboxylate(DDB) on the Lipid Peroxidation, Oxygen Free Radical Scavenging Enzymes Activities and Hepatic Functions in Ethanol-induced Hepatotoxic Rats (Biphenyldimethyl dicarboxylate(DDB)가 Ethanol 유발 간독성 흰쥐에서의 지질 과산화와 Oxygen Free Radical 제거 효소 활성도 및 간기능에 미치는 영향)

  • Song, Ho-Yeon;Ha, Kyung-Ran;Koh, Hyun-Chul;Shin, In-Chul;Suh, Tae-Kyu
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.217-225
    • /
    • 1994
  • In an attempt to define the effects of Biphenyldimethyl dicarboxylate(DDB) on the lipid peroxidation, oxygen free radical scavenging enzymes activities and hepatic functions in ethanol-induced hepatotoxic rats, we studies malondialdehyde(MDA) level and the activities of catalse, superoxide dismutase(SOD), glutamic-oxaloacetic transaminase(GOT) and glutamic-pyruvic transaminase(GPT) in liver of the rats at 24, 48 and 72 hr after the injection of ethanol and DDB. Sprague-Dalwey albino rats weighing 250 to 280gm were injected intraperitoneally with ethanol(2.5 gm/kg ) only and ethanol plus DDB(300mg/kg ). The result obtained can be summarized as follows : 1) The group treated with ethanol showed significantly higher MDA level and lower catalase and SOD activities at 24, 48 and 72hr after the injection as compared with that of control group. 2) The group treated with ethanol showed significantly higher GOT and GPT activities at 24, 48 and 72hr after the injection as compared with that of control group. 3) The group treated with ethanol plus DDB showed significantly lower MDA level and higher catalase and SOD activities at 24, 48 and 72 hr after the injection as compared with that of ethanol group. 4) The group treated with ethanol plus DDB showed significantly lower GOT and GPT activities at 24, 48 and 72 hr after the injection as compared with that of ethanol group. These results suggest that the excessive oxygen free radicals resulting from the depression of the activities of catalase and superoxide dismutase is an important determinant in pathogenesis of ethanol-induced hepatotoxicity and DDB has antioxidant effects.

  • PDF

A Novel Selenium- and Copper-Containing Peptide with Both Superoxide Dismutase and Glutathione Peroxidase Activities

  • Zou, Xian-Feng;Ji, Yue-Tong;Gao, Gui;Zhu, Xue-Jun;Lv, Shao-Wu;Yan, Fei;Han, Si-Ping;Chen, Xing;Gao, Chang-Cheng;Liu, Jun-Qiu;Luo, Gui-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.88-93
    • /
    • 2010
  • Superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) play crucial roles in balancing the production and decomposition of reactive oxygen species (ROS) in living organisms. These enzymes act cooperatively and synergistically to scavenge ROS. In order to imitate the synergism of these enzymes, we designed and synthesized a novel 32-mer peptide (32P) on the basis of the previous 15-mer peptide with GPX activity and a 17-mer peptide with SOD activity. Upon the selenation and chelation of copper, the 32-mer peptide was converted to a new Se- and Cu-containing 32-mer peptide (Se-Cu-32P) that displayed both SOD and GPX activities, and its kinetics was studied. Moreover, the novel peptide was demonstrated to be able to better protect vero cells from the injury induced by the xanthine oxidase (XOD)/xanthine/$Fe^{2+}$ damage system than its parents. Thus, this bifunctional enzyme imitated the synergism of SOD and GPX and could be a better candidate of therapeutic medicine.