• 제목/요약/키워드: Superoxide dismutage (SOD)

검색결과 1건 처리시간 0.018초

뇌조직의 활성산소 및 그 제거효소에 미치는 실크 피브로인의 영향 (Effects of Silk Fibroin on Oxygen radicals and Their Scavenger Enzymes in Brain of SD Rats)

  • 최진호;김대익;박수현;김정민;조원기;이광길;여주홍;이용우
    • 생명과학회지
    • /
    • 제10권4호
    • /
    • pp.340-346
    • /
    • 2000
  • This study was designed to investigate the effects of silk fibroin(Mw 500) powder (SFP) on oxygen radicals and the scavenger enzymes in brain membranes of rats. Spragu-Dawley(SD) male rats(160${\pm}$10g) were fed basic diet(control group), and experimental diets(SFP-2.5 and SFP-5.0 groups) added 2.5 and 5.0g/kg BW/day for 6 weeks. Hydroxyl radical($.$OH) levels resulted in a decreases(6.6% and 9.7%, 2.8% and 11.9%, respectively) in brain mitochondria and microsomes of SFP-2.5 and SFP-5.0 groups compared with control group, but were significantly decreased in these membrances of SFP-5.0 group only. Superoxide radical (O2) levels were a slightly decreased (2.0% and 9.1%, respectively) in brain cytosol of SFP-2.5 and SFP-5.0 groups compared with control group. Lipid peroxide(LPO) levels were significantly decreased (12.9% and 21.9%, 13.2% and 22.5%, respectively) in brain mitochondria and microsomes of SFP-2.5 and SFP-5.0 groups compared with control group. Oxidized protein (OP) levels were significantly decreased (16.7% and 15.7%, respectively) in brain microsomes of SFP-2.5 and SFP-5.0 group compared with control group, but significantly difference between in brain mitochondria of these two groups could not be obtained. Mn-SOD activities were remarkably increased (11.2% and 24.2%, respectively) in mitochodria of SFP-2.5 and SFP-5.0 groups. CuZn-SOD activities were effectively increased (7.7% and 19.6%, respectively) in brain cytosol of SFP-2.5 and SFP-5.0 groups, but significant difference between control and SFP-2.5 groups could be not obtained. GSHPx activities were considerably increased (5.3% and 11.7%, respectively) in brain cytosol of SFP-2.0 and SFP-5.0 groups compared with control group. There results suggest that anti-aging effect of silk fibroin may play an effective learning and memory role in a attenuating a oxidative stress and increasing a scavenger enzyme activity in brain membranes.

  • PDF