• Title/Summary/Keyword: Superelastic shape memory alloys

Search Result 24, Processing Time 0.016 seconds

Analysis of extended end plate connection equipped with SMA bolts using component method

  • Toghroli, Ali;Nasirianfar, Mohammad Sadegh;Shariati, Ali;Khorami, Majid;Paknahad, Masoud;Ahmadi, Masoud;Gharehaghaj, Behnam;Zandi, Yousef
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.213-228
    • /
    • 2020
  • Shape Memory Alloys (SMAs) are new materials used in various fields of science and engineering, one of which is civil engineering. Owing to their distinguished capabilities such as super elasticity, energy dissipation, and tolerating cyclic deformations, these materials have been of interest to engineers. On the other hand, the connections of a steel structure are of paramount importance because of their vulnerabilities during an earthquake. Therefore, it is indispensable to find approaches to augment the efficiency and safety of the connection. This research investigates the behavior of steel connections with extended end plates equipped hybridly with 8 rows of high strength bolts as well as Nitinol superelastic SMA bolts. The connections are studied using component method in dual form. In this method, the components affecting the connections behavior, such as beam flange, beam web, column web, extended end plate, and bolts are considered as parallel and series springs according to the Euro-Code3. Then, the nonlinear force- displacement response of the connection is presented in the form of moment-rotation curve. The results obtained from this survey demonstrate that the connection has ductility, in addition to its high strength, due to high ductility of SMA bolts.

Analyses of Behaviors of a Shape-Memory-Alloy Torque Tube Actuator (형상기억합금 비틀림 튜브 작동기의 거동 해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1083-1089
    • /
    • 2010
  • Shape memory alloys (SMAs) are smart materials. The unique characteristics of SMAs enable the production of large force and displacement. Hence, SMAs can be used in many applications such as in actuators and active structural acoustic controllers; the SMAs can also be used for dynamic tuning and shape control. A SMA torque tube actuator consisting of SMA tubes and superelastic springs is proposed, and the behaviors of the actuator are investigated. From the results of heat transfer analysis, it is proved that the SMA torque tube actuator with both resistive heating of SMA itself and a separate conventional heating rod in the tube core has good performance. The behavior of an actuator system was analyzed by performing a contact analysis, and the twisting motion was noticed when checking the actuation. 3D SMA nonlinear constitutive equations were formulated numerically and implemented by performing a nonlinear analysis by using Abaqus UMAT.

Effect of Thermomechanical Treatment on the Phase Transformation and Superelasticity in Ti-Ni-Cu Shape Memory Alloy (Ti-Ni-Cu 형상기억합금의 상변태 및 초탄성에 미치는 가공열처리의 영향)

  • Lee, O.Y.;Park, Y.K.;Chun, B.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.253-261
    • /
    • 1994
  • Transformation behavior and superelastic behavior of Ti-Ni-Cu alloys with various Cu content has been investigated by means of electrical resistivity measurement, X-ray diffraction, tensile test and transmission electron microscopy. Two types of heat treatment are given to the specimens: i) Solutions treatment. ii) thermo-mechanical treatment. The transformation sequence in solution treated Ti-Ni-Cu Alloys substituted by Cu for Ni up to 5at.% occurs to $B2{\rightleftarrows}B19^{\prime}$ and it proceeds in two stages by addition of 10at.%Cu, i. e, $B2{\rightleftarrows}B19{\rightleftarrows}B19^{\prime}$. Also, it has been found that Ti-30Ni-20Cu alloy transformed in one stage : $B2{\rightleftarrows}B19$. The thermo-mechanically treated Ti-47Ni-3Cu alloy transformed in two stages: B2${\rightleftarrows}$rhomboheral phase${\rightleftarrows}B19^{\prime}$, while transformation sequence in Ti-45Ni-5Cu and Ti-40Ni-10Cu alloy transformed as same as solution treated specimens. The critical stress for inducing slip deformation in solution treated and thermo-mechanically treated Ti-40Ni-10Cu alloy is about 90MPa and 320Mpa respectively.

  • PDF

Validation of Launch Vibration Isolation Performance of the Passive Vibration Isolator for the Scientific Payload BioCabinet for CAS500-3 (차세대중형위성 3호 과학탑재체 바이오캐비넷용 수동형 진동절연기의 발사진동 저감성능 검증)

  • Dong-Jae Seo;Yeon-Hyeok Park;Young-Jin Lee;Ji-Seung Lee;Kyung-Hee Kim;Soon-Hee Kim;Chan-Hum Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.81-88
    • /
    • 2024
  • The payload BioCabinet of CAS500-3 is designed for 3D stem cell differentiation, culture, and analysis utilizing bio 3D printing techniques in space. The 3D printing technique was initially developed for orbital use; however, it lacks separate validation for extreme launch vibration environments, necessitating a design that mitigates the launch load on the payload. This paper proposes a passive vibration isolator with a low-stiffness elastic support structure and high damping characteristics to reduce the launch loads affecting the BioCabinet. We explore the high-damping characteristics through the superelastic effects of SMA (Shape Memory Alloys) and a multi-layered structure incorporating viscoelastic tape. The effectiveness of the proposed vibration isolation system was confirmed via launch vibration tests on a qualification model.