• Title/Summary/Keyword: Supercritical fluid process

Search Result 104, Processing Time 0.036 seconds

High-pressure rheology of polymer melts containing supercritical carbon dioxide

  • Lee Sang-Myung;Han Jae-Ro;Kim Kyung-Yl;Ahn Young-Joon;Lee Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2006
  • Supercritical carbon dioxide ($scCO_2$) has advantages of being incorporated in polymer with high solubility and of being recovered easily by depressurizing. $scCO_2$ reduces the viscosity of polymer melt and it is expected to be use as a plasticizing agent. In this work, we studied on the effect of $scCO_2$ on the rheological properties of polymer melts during extrusion process. Slit die attached to twin screw extruder was used to measure the viscosity of polymer melts plasticized by supercritical $CO_2$. A gas injection system was devised to accurately meter the supercritical $CO_2$ into the extruder barrel. Measurements of pressure drop within the die, confirmed the presence of a one phase mixture and a fully developed flow during the measurements. The viscosity measurement of polypropylene was performed at experimental conditions of various temperatures, pressures and $CO_2$ concentrations. We observed that melt viscosity of polymer was dramatically reduced by $CO_2$ addition.

A Study on the Variable Condition Debinding Process in Supercritical CO2 for Removing Binder from Thick Ceramic Injection Molded Parts (두꺼운 세라믹 사출성형체로부터 효율적인 결합제 제거를 위한 초임계 CO2 가변조건 탈지공정 연구)

  • Kim, Hyung-Kun;Yim, Joon-Hyuk;Kim, Hyung-Soo;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2012
  • The purpose of this study is to remove paraffin wax binder effectively from powder injection molded part using supercritical fluids in powder injection molding process. For a thin powder injection molded part about 1-2 mm thickness, paraffin wax binder can be removed rapidly without any defect by traditional supercritical extraction process which has fixed high temperature and pressure condition. But, for a thick powder injection molded part, there are limitations in removing paraffin wax binder by the fixed high process condition because crack occurs at the beginning step. Therefore, here we studied variable condition debinding process that starts with mild process condition at the beginning step and then increase the process conditions simultaneously at each step. To find out the initial process condition that has the highest extraction yield without any defect for each sample thickness, we investigated various supercritical debinding conditions using 1-4 mm thickness ceramic injection molded sample. By using the variable condition debinding process that starts with the initial process condition at the first step and then increasing process conditions simultaneously at each step (temperature from 333.15 to 343.15 K, pressure from 12 to 27 MPa, and $CO_2$ flow rate from 1.5 to 10 L/min), over 95% of paraffin wax binder was removed from the 4 mm thick (10 mm diameter) ceramic injection molded disk samples within 5 hours.

A Study of Dyeing Properties of PET Fabrics under Supercritical CO2 Depending on Test Condition: by Temperature, Pressure, Leveling Time (초임계 유체 염색 조건에 따른 PET 섬유의 염색 특성: 온도별, 압력별, 시간별)

  • Choi, Hyunseuk;Park, Shin;Kim, Taeyoung;Song, Taehyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.14-24
    • /
    • 2019
  • In this study, dyeability of PET fabric was investigated depending on dyeing temperature, pressure, and leveling time using laboratory scale supercritical $CO_2(scCO_2)$ dyeing machine. Dyeing temperature, pressure, leveling time were varied from 100, 120, $130^{\circ}C$, 150, 200, 250bar, 40, 60, 80, 100min, respectively. It is proved that the higher temperature of $scCO_2$ dyeing process, the higher K/S value and the lower $L^*$ value, which in turn means the lower amount of dyeing molecules remained after process done. Compared 200bar with 250bar of dyeing pressure, $scCO_2$ dyeing fabrics under 250bar appeared to have a lower $L^*$ value, a higher K/S value than those from 200bar, meaning that dyeing color turns to darker with higher dyeing pressure. The experiments showed that the most ideal condition for $scCO_2$ dyeing process is $120^{\circ}C$, 250bar for 60 - 100min of leveling time.

A Study on the Electroplating using Macroemulsion in High Pressure (고압 매크로에멀젼을 이용한 전해도금에 관한 연구)

  • Park, Ji-Young;Yang, Jun Youl;Suh, Dong Jin;Yoo, Ki-Pung;Lim, Jong Sung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the supercritical electroplating was investigated by forming macroemulsion of electroplating solution using surfactant in supercritical $CO_2$. The fluorinated analogous AOT surfactant, sodium salt of bis (2,2,3,3,4,4,5,5-octafluoro-1-pentanol) sulfosuccinate which has both '$CO_2$ philic' chains and 'hydrophilic' head group was used as a surfactant, and Ni plate and Cu plate were used as the anode and the cathode, respectively. Electroplating was carried out in the conventional method and the supercritical macroemulsion and both results were compared. The supercritical electroplating was carried out in various concentration of surfactant such as 2, 4, 7 wt%, the volume ratio of Ni-plating solution to $CO_2$ was varied in the range of 10-70 vol%, and propane was used as a supercritical fluid instead of $CO_2$. According to the experimental results, the plated surface of Ni on Cu plate performed in supercritical macroemulsion was better than that, in conventional state. In the image of Ni surface plated on Cu plate in supercritical state, there were fewer pin-holes and pits comparing with that in the conventional process. The current and conductivity was increased as the volume ratio of Ni-plating solution to $CO_2$ was increased and the current and the amount of Ni plated on Cu plate were decreased as the concentration of surfactant become higher. In addition, in case of the continuous phase, using $CO_2$ was more effective than using $CO_2$.

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.

Extraction of Brown Rice Oil Including Essential Fatty Acid Using Supercritical Fluid Process (초임계유체 공정에 의한 유효지방산이 풍부한 현미유의 추출)

  • Kim, H.J.;Shin, M.O.;Hong, I.K.;Park, K.A.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.860-865
    • /
    • 1997
  • Brown rice oil contains palmitic acid, linolenic acid, linoleic acid, oleic acid, stearic acid, tocopherol, squalene, etc. The oil including essential fatty acids was extracted from the domestic brown rice bran using supercritical carbon dioxide(SCC) process, and the extracts were analyzed with GC-MSD. The extraction amount of brown rice oil was dependent upon the operating pressure and temperature, and the fatty acid composition of oil was varied with the reduced density(${\rho}_{\gamma}$) of the SCC. About 70~80% of brown rice oil was extracted in 4 hours. Especially, squalene which was not found in solvent extract phase was identified in supercritical fluid extraction phase only.

  • PDF

Effect of an Excipient on the Formation of PLGA Particles Using Supercritical Fluid (초임계 유체를 이용한 PLGA 입자 제조에 첨가제가 미치는 영향)

  • Jung, In-Il;Haam, Seung-Joo;Lim, Gio-Bin;Ryu, Jong-Hoon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In this study, we employed hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta}$-CD) as an excipient to produce poly(lactic-$co$-glycolic acid) (PLGA) fine particles by a supercritical fluid process, called aerosol solvent extraction system (ASES), and investigated the effect of HP-${\beta}$-CD content on the morphology of the particles. The influence of HP-${\beta}$-CD on the drug release characteristics of paclitaxel-loaded PLGA particles was also evaluated. Fine particles were obtained when the HP-${\beta}$-CD content in PLGA/HP-${\beta}$-CD mixtures was greater than 40% and 30%, respectively, for PLGA(75:25) and PLGA(50:50), whereas a film-like precipitate was obtained for lower HP-${\beta}$-CD content. The release rate for paclitaxel loaded PLGA(75:25)/HP-${\beta}$-CD particles was found to increase with HP-${\beta}$-CD content.

Effects of Particle Size and High Pressure Process on the Extraction Yield of Oil Compounds from Soybean Powder Using Hexane and Supercritical Fluid (입자 크기와 초고압 처리에 따른 유기용매와 초임계 유체 추출법에서의 대두유 추출수율의 변화)

  • Yoon, Won-Byong
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.203-208
    • /
    • 2011
  • Effects of particle size and high pressure processing on the extraction rate of oil compounds from soybean powder were evaluated by Soxhlet method using hexane and supercritical fluid extraction (SFE) using $CO_{2}$. SFE was carried out at 4,000 psi and $50^{\circ}C$ for 4 hr. The mean particle sizes were varied from 26.7 to 862.0 ${\mu}m$ by controlling milling time. Saturation solubility increased as the particle size decreased. At large particle size, high pressure processing (HPP) showed higher extraction yield in both hexane extraction and SFE, but, as the particle size decreased, the HPP was irrelevant to the extraction yield in SFE. The higher extraction rate obtained from the smaller particle size. The scanning electronic microscopy of soybean powder treated by HPP showed pores on the surface of the particle. The higher extraction rate and yield from HPP treatment might be due to the less internal resistance of transferring the solvent and miscellar in the solid matrix by collapsing of tissues.

Stability Evaluation of Vitamin-C Inclusion Complexes Prepared using Supercritical ASES Process (초임계 ASES 공정으로 제조된 Vitamin-C 포접복합체의 안정성 평가)

  • Yang, Jun-Mo;Kim, Seok-Yun;Han, Ji-Hyun;Jung, In-Il;Ryu, Jong-Hoon;Lim, Gio-Bin
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.157-163
    • /
    • 2006
  • A supercritical fluid process, called aerosol solvent extraction system(ASES), is especially suitable to the pharmaceutical, cosmetic and food industries due to its environmentally-friendly, non-toxic and residual solvent-free properties. In particular, the application of the ASES process to the processing of thermo-labile bioactive compounds has received attention of many scientists and engineers because of its low-temperature operating conditions. Unstable substances such as Vitamin-C and Vitamin-A can be effectively protected from degradation during the preparation process, because the ASES process is free from oxygen and moisture. In this study, Vitamin-C was formulated with 2-hydroxypropyl-${\beta}$-cyclodextrin (HP-${\beta$-CD) for enhancement of Vitamin-C stability and bioavailability using the ASES process. To investigate the influence of the preparation process on the stability of Vitamin-C, Vitamin-C/HP-${\beta}$-CD inclusion complexes were prepared using both conventional solvent evaporation method and ASES process, and stored in a 50 mM phosphate buffer solution of pH 7.0 at $25^{\circ}C$ for 24 hours. From the experimental results, the stability of the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared from the ASES process was found to be much higher than that of pure Vitamin-C and the Vitamin-C/HP-${\beta}$-CD inclusion complex prepared by the solvent evaporation method. The stability of Vitamin-C was observed to increase with the decrease of temperature at a constant pressure or with the increase of pressure at a constant temperature.