• Title/Summary/Keyword: Superconductor Flywheel Energy Storage System

Search Result 36, Processing Time 0.027 seconds

Design of QFT controller of superconductor flywheel energy storage system for load frequency control

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • In this paper, the Superconductor flywheel energy storage system (SFESS) was used for the load frequency control (LFC) of an interconnected 2 area power system. The robust SFESS controller using quantitative feedback theory (QFT) was designed to improve control performance in spite of parameter uncertainty and unexpected disturbances. An overlapping decomposition method was applied to simplify SFESS controller design for the interconnected 2 area power system. The model for simulation of the interconnected 2 area power system included the reheat steam turbine, governor, boiler dynamics and nonlinearity such as governor deadband and generation rate constraint (GRC). To verify robust performance of proposed SFESS controller, dynamic simulation was performed under various disturbances and parameters variation of power system. The results showed that the proposed SFESS controller was more robust than the conventional method.

Quasi-static Characteristics in Radial Direction of 100 kWh Class Superconductor Bearing (100 kWh급 초전도 베어링의 지름방향 준정적 특성)

  • Jung, S.Y.;Park, B.J.;Han, Y.H.;Park, B.C.;Lee, J.P.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.27-31
    • /
    • 2010
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. Many aspects of the quasi-static behavior of flywheel rotors still need to be studied closely, and the rotors require a stable and highly efficient supporting system such as high temperature superconductor (HTS) bearings, which offer dynamic stability without the use of active control. Quasi-static properties of HTS bearings in the radial direction provide data to solve problems which may occur in a running system. Since stiffness in countering rotor vibration is the main parameter for designing an HTS bearing system, we investigated the quasi-static properties of the magnetic force between permanent magnets(PMs) and HTS bulks in the radial direction. We measured radial stiffness, and discovered that bearing stiffness varied greatly depending on the number of active HTS bulks. This is valuable data for predicting the change in stiffness during partial HTS bearing failure. The quasi-static test results are used for optimal design and performance prediction for the 100 kWh class superconductor bearing.

Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing (하이브리드 AMB를 포함한 초전도 플라이휠 에너지 저장장치의 실험평가)

  • Lee, J.P.;Kim, H.G.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

High Speed Operating Test of a 300Wh Flywheel Energy Storage System Using Superconductor Bearings (초전도베어링을 이용한 300 Wh급 플라이휠 에너지저장장치의 고속운전시험)

  • 김영철;최상규;성태현;이준성;한영희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.514-520
    • /
    • 2001
  • A 300Wh class flywheel energy storage system using high Tc superconductor bearings(HTC SFES) is being developed by KIMM and KEPRI. HTC SFES consists of a flywheel rotor, superconductor bearings, a motor/generator and its controller, touch-down bearings, vacuum chamber, etc. Stiffness and damping values of superconductor bearings were experimentally estimated to be 67,700N/m and 29Ns/m respectively. The present HTC SFES was designed to have maximum operating speed of 33000 rpm, which is far above 2 rigid body mode critical speeds of 645rpm and 1,275rpm. Leaf-spring type touch-down bearing were utilized to have the system pass safely through the system critical speeds. It has been experimentally verified that the system can run stably up to 28,000 rpm so that HTC SFES is now expected to reach up to its maximum design speed of 33,000rpm without any difficulties. The Halbach array motor & generator has also been proven its effectiveness on transferring electrical energy to a rotaing composite flywheel in kinetic form.

  • PDF

Damping Properties of a Superconductor Bearing in a 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 플라이휠용 초전도 베어링의 댐핑 특성평가)

  • Park, B.J.;Jung, S.Y.;Han, S.C.;Han, S.J.;Lee, D.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.66-70
    • /
    • 2012
  • Superconductor flywheel energy storage system (SFESs) is an electro-mechanical battery with high energy storage density, long life, and good environmental affinity. SFESs have been developed for application to a regenerative power of train, the storage of distributed power sources such as solar and wind power, and a power quality improvement. As superconductor bearing is completely passive, it is not necessary to control a system elaborately but accurate analysis in mechanical properties of the HTS bearing is very important for application to SFESs. Stiffness and damping properties are the main index for evaluation the capacity of HTS bearings and make it possible to adjust rotordynamic properties while operating the rotor-bearing system. The superconductor bearing consists of a stator containing single grain YBCO bulks, a ring-type permanent magnet rotor with a strong magnetic field that can reach the bulk surface, and a bearing support for assembly to SFESs frame. In this study, we investigated the stiffness and damping properties of superconductor bearings in 35 kWh SFESs. Finally, we found that 35 kWh superconductor bearing has uniform stiffness properties depend on the various orientations of rotor vibration. We discovered total damping coefficient of superconductor bearing is affected by not only magnetic damping in superconductor bulk but also external damping in bearing support. From the results, it is confirmed that the conducted evaluation can considerably improve energy storage efficiency of the SFESs, and these results can be used for the optimal capacity of superconductor bearings of the SFESs.

Experimental Estimation on Magnetic Friction of Superconductor Flywheel Energy Storage System

  • Lee, Jeong-Phil;Han, Sang-Chul;Park, Byeong-Choel
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • This study estimated experimentally the loss distribution caused by magnetic friction in magnetic parts of a superconductor flywheel energy storage system (SFES) to obtain information for the design of high efficiency SFES. Through the spin down experiment using the manufactured vertical shaft type SFES with a journal type superconductor magnetic bearing (SMB), the coefficients of friction by the SMB, the stator core of permanent magnet synchronous motor/generator (PMSM/G), and the leakage flux of the metal parts were calculated. The coefficients of friction by the stator core of PMSM/G in case of using Si-steel and an amorphous core were calculated. The energy loss by magnetic friction in the stator core of PMSM/G was much larger than that in the other parts. The level of friction loss could be reduced dramatically using an amorphous core. Energy loss by the leakage magnetic field was small. On the other hand, the energy loss could be increased under other conditions according to the type of metal nearby the leakage magnetic fields. In manufactured SFES, the rotational loss by the amorphous core was approximately 2 times the loss of the superconductor and leakage. Moreover, the rotational loss by the Si-steel core is approximately 3~3.5 times the loss of superconductor and leakage.

Damping of Low Frequency Oscillation in Power System using Robust Control of Superconductor Flywheel Energy Storage System (초전도 플라이휠 에너지 저장장치의 강인제어를 이용한 전력계통의 저주파진동 억제)

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • In this paper, the robust superconductor flywheel energy storage system(SFESS) controller using $H_{\infty}$ control theory was designed to damp low frequency oscillation of power system. The main advantage of the $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Both disturbance attenuation and robust stability for the power system were treated simultaneously by using mixed sensitivity $H_{\infty}$ problem. The robust stability and the performance for uncertainties of power system were represented by frequency weighted transfer function. To verify control performance of proposed SFESS controller using $H_{\infty}$ control, the closed loop eigenvalue and the damping ratio in dominant oscillation mode of power system were analyzed and nonlinear simulation for one-machine infinite bus system was performed under disturbance for various operating conditions. The results showed that the proposed $H_{\infty}$ SFESS controller was more robust than conventional power system stabilizer (PSS).

Identification of Mechanical Characteristics of Superconductor proceeding Bearing (초전도 저널베어링의 기계적 특성에 대한 연구)

  • Yun, H.J.;Han, Y.H.;Han, S.C.;Jeong, N.H.;Kim, J.;Sung, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2163-2166
    • /
    • 2004
  • For designing high Tc superconductor proceeding bearing(HTSJB) which is used on a flywheel energy storage system which requests the free of the bearing loss caused by the friction, it is necessary to understand the basic characteristics of the classical superconductor proceeding bearing because the mechanical characteristics of the HTSJB are identified by the magnetic relationships between the permanent magnet(PM) and the high Tc superconductor(HTS). In this paper, using the method, frozen image model, the force problems between the PM and the HTS were solved and then the dynamic characteristics of the rotor inside of the HTSJB can be expected in advance by using the basic characteristics between the PM and the HTS. The coefficient of friction of the HTSJB was measured in the vacuum environment. From the results, the mechanical characteristics of HTSJB can be identified using the numerical models.

  • PDF