• 제목/요약/키워드: Superconducting nanowire single photon detector

검색결과 2건 처리시간 0.017초

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors

  • Choi, Jiman;Choi, Gahyun;Lee, Sun Kyung;Park, Kibog;Song, Woon;Lee, Dong-Hoon;Chong, Yonuk
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.375-383
    • /
    • 2021
  • We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.

A brief review on the recent progress of superconducting nanowire single photon detectors

  • Chong, Yonuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.22-25
    • /
    • 2017
  • Superconducting nanowire single photon detectors (SNSPD) have become the most competent photon-counting devices in wide range of wavelengths. Especially in the communication wavelength (infrared), SNSPD has shown unbeatable superior performance compared to the state-of-art semiconductor single photon detectors. The technology has matured enough for the last decade so that several commercial systems are now almost ready for routine use in general optics experiments. Here we summarize briefly the recent progress in this research field, and hope to motivate further research on the improvement of the device and the system. We cover the basic key concepts, device and system performances, remaining issues and possible further research directions of SNSPD.