• Title/Summary/Keyword: Superconducting critical temperature

Search Result 382, Processing Time 0.025 seconds

The variation of critical current by the formation of crack in a high-temperature superconducting tape (크랙에 의한 고온 초전도체 테이프의 임계전류 특성변화)

  • 박을주;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The variation of critical current by the formation of crack in a high temperature super-conducting tape was studied by experimental and numerical analyses. The current-voltage relation of HTS tape is measured by the four-point measurement method. Numerical analyses are used to solve two dimensional heat conduction equation, considering the temperature distribution. By comparing current-voltage relation of experimental and numerical results, the validity of numerical method is verified.

[ $YBa_2Cu_3O_x$ ] Superconductor by Adding with Non-superconducting Additives

  • Soh, Dea-Wha;Cho, Yong-Joon;Natalya, Korobova
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.349-352
    • /
    • 2004
  • The improvement of critical temperature $(T_c)$, critical magnetic field $(H_c)$, and critical current density $(J_c)$ of superconductor is important for practical applications. In this study, the additives such as metal oxides were used to improve the preparation conditions of $YBa_2Cu_3O_x$ superconducting bulk samples and depending on additives the properties of $YBa_2Cu_3O_x$ superconductor were studied. The effects of additives to the density, grain alignment, and porosity of samples that affect the critical current density of superconductor also have been investigated.

  • PDF

Basic Study of IPMSM with High-Temperature Superconducting Wire Rod

  • Okada, Kazuya;Morimoto, Shigeo;Sanada, Masayuki;Inoue, Yukinori
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.148-153
    • /
    • 2013
  • It is important to improve the efficiencies of motors to overcome problems such as decreasing energy reserves and environmental pollution. Superconductors are promising for developing high-efficiency motors. However, superconducting wires must be kept in critical conditions and the AC loss needs to be minimized. In this paper, a design of a superconducting interior permanent magnet synchronous motor (IPMSM) is proposed that reduces the AC loss. The characteristics of superconducting and normal-conducting IPMSMs are compared. The proposed superconducting IPMSM has a low AC loss and a very high efficiency at low speeds.

Insulation of Winding and Current Lead of the High-Tc Superconducting Magnets for DC Reactor Type SFCL (DC 리액터형 고온초전도한류기용 고온초전도자석의 권선 및 전류리드의 절연)

  • 양성은;배덕권;전우용;김영식;김상현;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.226-229
    • /
    • 2003
  • Following the successful development of practical high temperature superconducting (HTS) wires, there has been renewed activity in the development of superconducting power equipments. HTS equipments must be operated in the coolant, such as liquid nitrogen (L$N_2$) or cooled by cooler, such as GM-cryocooler to maintain the temperature below critical temperature. In this paper, dielectric strength of some insulating materials, such as epoxy, teflon, and glass fiber reinforced plastic (GFRP) in L$N_2$was measured. Surface breakdown voltage of GFRP which is basic property in design of HTS solenoid coil was measured. Epoxy is a goof insulating material but it is fragile at cryogenic temperature. The multi-layer insulating method of current lead is suggested to compensate this fragile property. It consists of teflon tape layer and epoxy layer fixed with texture. Based on these measurements, the 6.6㎸ class HTS magnet for DC reactor type high-T$_{c}$ superconducting fault current limiter (SFCL) was successfully fabricated and tested.d.

  • PDF

Cooling performance test of the superconducting fault current limiter

  • Yeom, H.;Hong, Y.J.;In, S.;Ko, J.;Kim, H.B.;Park, S.J.;Kim, H.;Kim, H.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.66-70
    • /
    • 2014
  • The superconducting fault current limiter (SFCL) is an electrical power system device that detects the fault current automatically and limits the magnitude of the current below a certain safety level. The SFCL module does not have any electrical resistance below the critical temperature, which facilitates lossless power transmission in the electric power system. Once given the fault current, however, the superconducting conductor exhibits extremely high electrical resistance, and the magnitude of the current is accordingly limited to a low value. Therefore, SFCL should be maintained at a temperature below the critical temperature, which justifies the cryogenic cooling system as a mandatory component. This report is a study which reported on the cooling system for the 154 kV-class hybrid SFCL owned by Korea Electric Power Corporation (KEPCO). Using the cryocooler, the temperature of liquid nitrogen (LN2) was lowered to 71 K. The cryostat was pressurized to 5 bars to improve the dielectric strength of nitrogen and suppress nitrogen bubble foaming during operation of SFCL. The SFCL module was immersed in the liquid nitrogen of the cryostat to maintain the superconducting state. The performance test results of the key components such as cryocooler, LN2 circulation pump, cold box, and pressure builder are shown in this paper.

Effect of Doping Elements on Superconducting Characteristics in Bi-system Ceramics (Bi계 세라믹에서 초전도체 특성에 미치는 도우핑 원소의 영향)

  • 양승호;박용필;김용주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.198-203
    • /
    • 2000
  • This paper investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their superconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

Critical Current Degradation Characteristics by Temperature Difference of L$N_2$-Normal in Repetitive Bending Strain of High Temperature Superconducting Tape (고온 초전도 선재의 굽힘횟수와 온도차에 의한 임계전류저하특성)

  • 김해준;김석환;송규정;김해종;배준한;조전욱;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.274-277
    • /
    • 2003
  • Critical current(Ic) degradation of HTS tapes after bending is one of the hottest issues in HTS development and application studies. Many people are measuring Ic degradations for effect of bending radius. However even if the bending radius is larger than the breaking radius a HTS tapes can be damaged by repetitive bending, which is unavoidable in the winding processes. Therefore, We studied the Ic degradation after repetitive bending. at 77K with self-field, of Bi-2223 tapes processed by "Powder-in-Tube" technique, which was made by America Superconductor Corporation(AMSC) and superconductiing tapes that strain is imposed measured critical current by temperature difference of L$N_2$ and normal temperature. Like this, critical current could measure that degradation about 1~3% by temperature difference. These results will amount the most important basis data in power electric machine of superconductivity cable, magnet, etc that winding work is require.

  • PDF

Fabrication of a BSCCO Magnet and its Operating Characteristics of Current Compensation in Persistent Current Mode (BSCCO Magnet 제작 및 영구전류모드에서의 전류 보상 운전 특성)

  • Jo, Hyun-Chul;Chang, Ki-Sung;Jang, Jae-Young;Kim, Hyung-Jun;Chung, Yoon-Do;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.56-60
    • /
    • 2010
  • Recently, many researches have been carried out for a high temperature superconducting (HTS) magnet which is advantageous in high critical current density and critical temperature. In HTS magnet, however, critical current is decreased by perpendicular magnetic field and persistent current is hard to maintain due to a low index value and high joint resistance compared with low temperature superconducting (LTS) magnet. In this paper, the HTS magnet using BSCCO wire was simulated through finite element method (FEM) and manufactured. we experimentally investigated operating characteristics of the compensating mode of the HTS magnet for current decay and made a comparison between persistent current mode and compensating mode. A feedback control unit was used to sustain current within specified ranges with defined upper and lower limits.

DC V-I Characteristics of a High Temperature Superconductor for a 600 kJ Superconducting Magnetic Energy Storage Device in an Oblique External Magnetic Field (경사 외부자장에 대한 600 kJ급 SMES용 HTS도체의 DC V-I 특성)

  • Li, Zhu-Yong;Ma, Yong-Hu;Ryu, Kyung-Woo;Choi, Se-Yong;Kim, Hae-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • We are developing a small-sized high temperature superconducting magnetic energy storage (HTS-SMES) magnet with the nominal storage capacity of 600 kJ, which provides electric power with high quality to sensitive electric loads. Critical current and N-value of a high temperature superconductor with large current, which was selected for the development of the 600 kJ HTS-SMES magnet, were investigated in various oblique external magnetic fields. Based on the critical current and N-value measured for the short sample conductor, we discussed the DC V - I characteristic of a model coil fabricated with the same conductor of 500 m. The results show that the measured critical current and N-value of the conductor for parallel field are constant in external magnetic fields less than about 0.2 T. However, for oblique fields, its critical current and N -value abruptly decrease in all external magnetic fields. Moreover, the measured critical current of the model coil well agrees with the numerically calculated one based on the DC V - I characteristic measured for the short sample conductor. This suggest that losses and critical currents for an HTS-SMES magnet made up of a high temperature superconductor with anisotropic characteristic are predictable from the data of a short sample conductor.

Reaction temperature dependence of MgB2 superconducting bulks using the different sizes of Mg raw powders

  • K.C., Chung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.36-39
    • /
    • 2022
  • Since the MgB2 superconductor is simply composed of two constituents of Mg and B, its performance can be monitored easily with the change of one ingredient compared to the other. With the powder size of B less than 100 nm, two different sizes of Mg powders are used to investigate the reaction temperature dependence of MgB2 bulk samples. In the range of 630-700℃ for the duration of 30 min., the un-reacted Mg is seen only at 630℃ with Mg powder size of <5 ㎛, whereas Mg traces are detected at all the temperature range with Mg powder size of <45 ㎛. The reaction temperature dependence of MgB2 superconducting transition temperature, Tc, shows little difference whether Mg powder size is large or small in this range except for the 630℃. It is worthy of notice that the critical current densities of MgB2 show higher performance with the small size of Mg compared to the large one at all field ranges. With the Mg powder size of <45 ㎛, flux pinning is enhanced with decreasing the reaction temperature, whereas flux pinning properties is quite similar in the Mg powder size of <5 ㎛ except for the 630℃, where Mg is left behind after the reaction.