• Title/Summary/Keyword: Superconducting critical temperature

Search Result 382, Processing Time 0.03 seconds

Fabrication and Current Transport Properties of $TmBa_{2}Cu_{3}O_{7-x}$ Coated Conductor by PLD Process (PLD법을 이용한 $TmBa_{2}Cu_{3}O_{7-x}$ 초전도 선재 제작 및 전류전송특성 평가)

  • Kwon, O-Jong;Ko, Rock-Kil;Koo, Hyun;Bae, Sung-Hwan;Jung, Myung-Jin;Oh, Sang-Soo;Park, Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2209-2213
    • /
    • 2009
  • $REBa_{2}Cu_{3}O_{7-d}$(REBCO) coated conductors(REBCO CCs) have been studied for electric power applications which require high current density wires. As long as the critical transition temperature(Tc) is concerned, REBCO CCs with large $RE^{3+}$ ions have been expected to have better current transport properties than those with smaller $RE^{3+}$ ions. For this reason, REBCO's with large $RE^{3+}$ ions which include GdBCO, NdBCO and SmBCO have been mainly considered as the superconducting layer of CCs. On the other hand, REBCO's with smaller $RE^{3+}$ions are expected to have advantages in the fabrication process of CCs because of the lower melting temperature. But it has not yet been made clear which REBCO is the most suitable for the superconducting layer of CCs. In this study, we investigated the current transport properties of REBCO CCs with small $RE^{3+}$ ion and advantages of using that in the CC fabrication process. Thin films of TmBCO, which has smaller $RE^{3+}$ion than most other $RE^{3+}$ ions, were fabricated on buffered metal substrate as the superconducting layer of CC by PLD process. TmBCO CC shows critical current density (Jc (77 K, sf) = $2.3\;MA/cm^2$) high enough to be utilized for application in electric power devices. Compared with previous experiments using the same PLD system, deposition temperature was approximately $20^{\circ}C$ lower than NdBCO thin films on buffered metal substrates.

Superconducting properties through ceramic coating condition on high-Tc superconducting tapes (고온 초전 도체의 산화물 코팅 조건 변화에 따른 초전도 특성의 변화)

  • 이남진;하동우;하홍수;장현만;오상수;손명환;권영길;김상현;류강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.218-221
    • /
    • 2000
  • Currently, Bi-2223 HTS tape is capable of being fabricated in longer than 100m length by industrial processes. But there are some problems in heat treatment of the degree of longer than 100m tape, which is in term of volume occupied with specimen in furnace. The effects of ceramic coating with variable slurry states were studied in Bi-2223 high-temperature superconductor. The HTS tapes coated with oxide were prepared by using dip-coating method on slurry state. Critical current(I$_{c}$) of tapes coated with ceramic materials were equal with 11.5A at 77K after first heat treatment as different slurries. For final heat treatment, Critical current of HTS tapes coated with zirconia oxide mixed in PMMA and PVA organic solute were 20.8A at 77K. The breakdown voltage of HTS tapes coated with zirconia oxide were 3kV in air and 4~7kV in L$N_2$.>.

  • PDF

Superconducting properties and microstructure of electron beam irradiated MgB2 superconductors

  • Kim, C.J.;Lee, Y.J.;Cho, I.H.;Jun, B.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.18-22
    • /
    • 2022
  • The effect of electron beam (EB) irradiation on superconducting properties and microstructures of MgB2 bulk superconductors were investigated. At E-beam doses of 1×1016 e/cm2 and 1×1017 e/cm2, the effect of irradiation on a superconducting transition temperature (Tc) of MgB2 was weak. As a dose increases to 5×1017 e/cm2, Tc decreases by 0.5 K. The critical current density (Jc) measured at 4.2 K and 20 K, and 0 T - 5 T increases slightly as exposure time increases. X-ray diffraction for the irradiation surface of MgB2 shows that the diffraction intensity of (hkl) peaks decreases proportionally as the exposure time increases. This indicates that the crystallinity of MgB2 was degraded by irradiation. TEM investigation for the irradiated sample showed distorted lattice structure, which is consistent with the XRD results. The Jc increase and Tc reduction of MgB2 by irradiation are believed to be caused by the lattice distortion.

Basic Insulation Characteristics of Conduction-Cooled HTS SMES System (전도냉각 고온초전도 SMES 시스템의 기초절연 특성)

  • Choi Jae-Hyeong;Kwang Dong-Soon;Cheon Hyeon-Gweon;Kim Sang-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.404-410
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 40[K] should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. In order to take advantage of a greater critical current density of high temperature superconducting (HTS) and considerably reduce the size and weight of the system, conduction-cooled HTS superconducting magnetic energy storage (SMES) at temperatures well below 40[K] should be investigated. This work focuses on the breakdown and flashover phenomenology of dielectrics exposed in air and/or vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summarize the insulation factors of the magnet for the conduction cooled HTS SMES. And Secondly a surface flashover as well as volume breakdown in air and/or vacuum with two kind insulators has been investigated. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature. The commercial application of many conduction-cooled HTS magnets, however, requires refrigeration at temperatures below 40[K], in order to take advantage of a greater critical current density of HTS and reduce considerably the size and weight of the system. The magnet is driven in vacuum condition. The need to reduce the size and weight of the system has led to the consideration of the vacuum as insulating media. We are studying on the insulation factors of the magnet for HTS SMES. And we experiment the spacer configure effect in the dielectric flashover characteristics. From the results, we confirm that our research established basic information in the insulation design of the magnet.

Effect of Metal Oxide of Ceramic Superconductor for Neutron beam Irradiation (중성자 조사용 전기도체의 첨가물 효과)

  • Lee, Sang-Heon;Choi, Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.429-432
    • /
    • 2008
  • Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of superconducting materials at liquid nitrogen temperature. The improvement of the critical current can be achieved by forming the nano size defect working as a flux pinning center inside the superconductor. In this paper, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of superconductor.

The effects of heat treatment condition on critical characteristics of HTSC bulk (열처리조건이 초전도벌크의 임계특성에 미치는 영향)

  • 임성훈;한태희;박경국;조동언;이중근;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.356-359
    • /
    • 1997
  • The Effects of different melting temperature and holding time in the melting temperature on J$\sub$c/ of YBa$_2$Cu$_3$O$\sub$x/ based superconducting bulk using MPMG process were investigated. the value of critical current density was the largest at l120$^{\circ}C$, the melting temperature which is appointed to the mid point of (Y$_2$BaCuO$\sub$5/ + Liquid)region. With the melting temperature in which the value of J$\sub$c/ is the largest, J$\sub$c/ was again measured to see whether the holding time at this proper melting temperature has the effect on the critical characteristics. From the result above it was concluded that the melting temperature and holding time were important to improve the J$\sub$c/ and the formation of the Y$_2$BaCuO$\sub$5/. In this paper, the melting temperature obtained was l120$^{\circ}C$ and propel holding time could be obtained as 20 minute and the more holding time was not effective in the J$\sub$c/ improvement as well as the formation of Y$_2$BaCuO$\sub$5/.

  • PDF

Effects of Precursor Powders on the Directional Growth of $YBa_2Cu_3O_x$ Superconductors

  • 성현태;한상철;한영희;이준성;김유진;노광수
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 1999
  • Textured bulk $YBa_2Cu_3O_x$ superconductors samples were grown directionally using different precursors of $YBa_2Cu_3O_x$ power. and a mixture of $YBa_2Cu_3O_5, BaCuO_2 and CuO$ powder. The microstructures and superconducting properties of the samples were compared. The mixture powder produced better microstructures i.e. dense and crack-free so that a higher critical current density was achieved at the same hot-zone temperature of 115$0^{\circ}C$ than the reacted powder does. When the reacted powder used as a precursor, as the hot-zone temperature increased upto 1215$^{\circ}C$, the texture of the sample improved and the critical current density increased. The amount of melt in the sample is of secondary importance for the growth of superconducting $YBa_2Cu_3O_x$ grains. The microstructures and superconductivity of good quality superconductors grown directionally were more strongly influenced by the kind of precursor rather than the amount og melt in a sample.

  • PDF

A Study on the Winding Method for Reducing Joints of the High Temperature Superconducting Double Pancake Coil (고온 초전도 더블 팬케이크의 접합 수 감소를 위한 권선 방법에 관한 연구)

  • Kang, J.S.;Jo, H.C.;Jang, J.Y.;Hwang, Y.J.;Lee, J.;Lee, W.S.;Park, Y.G.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.30-33
    • /
    • 2012
  • A double pancake winding method is widely used to make the superconducting magnet, using high temperature superconductor (HTS) tape. In the double pancake winding method, the joints with contact resistances between double pancake coils are inevitably needed. The electrical joule heating on the contacts causes refrigerant loss during operation. And a space outside the winding, for splices and mechanical support, is more than that for its layer-wound equivalent. In this paper, a double pancake winding method in order to reduce the number of the joints was proposed. Both of the double pancake coils using the conventional winding method and the proposed winding method have been fabricated and tested to make the solution technically feasible in the double pancake winding method. Especially, critical-current tests of the fabricated double pancake coils were conducted in order to show the same performance and confirm contact resistances between double pancake coils.