• Title/Summary/Keyword: Superconducting Magnet Energy Storage

Search Result 56, Processing Time 0.027 seconds

Design, Fabrication and Evaluation of a Conduction Cooled HTS Magnet for SMES (SMES용 전도냉각형 고온초전도 자석의 설계, 제작 및 평가)

  • Bae, Joon-Han;Kim, Hae-Jong;Seong, Ki-Chul
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • This paper describes design, fabrication, and evaluation of the conduction cooled high temperature superconducting (HTS) magnet for superconducting magnetic energy storage (SMES). The HTS magnet is composed of twenty-two of double pancake coils made of 4-ply conductors that stacked two Bi-2223 multi-filamentary tapes with the reinforced brass tape. Each double pancake coil consists of two solenoid coils with an inner diameter of 500 mm, an outer diameter of 691 mm, and a height of 10 mm. The aluminum plates of 3 mm thickness were arranged between double pancake coils for the cooling of the heat due to the power dissipation in the coil. The magnet was cooled down to 5.6 K with two stage Gifford McMahon (GM) cryocoolers. The maximum temperature at the HTS magnet in discharging mode rose as the charging current increased. 1 MJ of magnetic energy was successfully stored in the HTS magnet when the charging current reached 360A without quench. In this paper, thermal and electromagnetic behaviors on the conduction cooled HTS magnet for SMES are presented and these results will be utilized in the optimal design and the stability evaluation for conduction cooled HTS magnets.

Development of a Flywheel Energy Storage System using Superconducting Magnetic Bearing (초전도 플라이휠 에너지 저장시스템 개발)

  • 정환명;연제욱;최재호;고창섭
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.433-441
    • /
    • 1999
  • This paper presents a S-FES(Superconducting magnetic becuing Flywheel Energy Storage System) for the p purpose of replacing battery used to store the energy. Especially, the design elements of FES, such as the b beming, wheel mateηaI, and power converter, etc., are described. The design and manufacturing techniques of t the controllable IXlwer converter are proposed to generate the sinusoidal output current in the high speed operation and to get the const빠synchronous motor with halbach cuTay of high coesive I\d-Fe-B permanent magnet is used as the driver of F FES. The proposed S-FES system shows the stable rotation characteristics at high speed range about l 10,000[rpm]. To verify the validity of proposed system, the comparative study with the conventional ball b beming s~rstem is proceeded and it is well confirmed with the result of the lower friction losses of S-FES S system.

  • PDF

Electrical insulating design of 600kJ conduction cooled HTS SMES

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Min, Chi-Hyun;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.27-30
    • /
    • 2007
  • The electrical insulation design and withstanding test of mini-model coils for 600 kJ class conduction cooled high temperature superconducting magnetic energy storage (HTS SMES) have been studied in this paper. The high voltage is generated to both ends of magnet of HTS SMES by quench or energy discharge. Therefore, the insulation design of the high voltage needs for commercialization, stability, reliability and so on. In this study, we analyzed the insulation composition of a HTS SMES, and investigated about the insulation characteristics of the materials such as Kapton, AIN and vacuum in cryogenic temperature. Base on these results, the insulation design for 600 kJ conduction cooled HTS SMES was performed. The mini-model was manufactured by the insulation design, and the insulation test was carried out using the mini-model.

Design of an High Temperature Superconducting Magnet for a 5 MJ SMES (5 MJ SMES용 고온초전도 마그넷 설계)

  • Lee, Se-Yeon;Kim, Yung-Il;Park, Sang-Ho;Lee, Ji-Kwang;Bae, Joon-Han;Seong, Ki-Chul;Choi, Kyeong-Dal;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.894-895
    • /
    • 2011
  • 본 논문은 5 MJ의 저장용량을 가지는 초전도 에너지 저장장치용(Superconducting Magnetic Energy Storage System, SMES) 마그넷의 설계에 관한 연구 결과이다. 마그넷의 설계에 사용된 초전도 선재는 2세대 고온초전도 선재인 YBCO CC이고, 초전도 선재의 냉각방식은 냉동기를 이용한 전도냉각으로 마그넷의 운전온도는 14 K 이다. SMES용 마그넷은 테이프형태를 가지고 있는 초전도 선재의 형태를 고려하여 팬케이크 코일로 권선된 모듈코일을 이용하여 토로이드 형태의 마그넷 구조로 설계되었다. 설계를 통해 마그넷의 저장에너지와 초전도 선재의 사용량, 자속밀도 분포 등을 확인하였다.

  • PDF

Characteristics of Dielectric Breakdown in Liquid Nitrogen (액체질소의 절연파괴특성)

  • 추영배;류경우;류강식;김상현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.872-878
    • /
    • 1988
  • During the past few years, a great deal of attention has been directed to the application of superconductivity to the electrical systems such as superconducting power transmission lines, superconducting magnet energy storage and so on. Yet in order to develop the practical model of these electrical equiqments utilizing suprconductivety and other phenomena at cryogenic temperautre, it is necessary to know the dielectric behaviour of insulating materials at cryogenic temperature in view of reliability, safety and economy of these machines. Investigation of dielectric properties of cryogenic liquids is very important due to the dual role of those as the dielectric and cooling medium. In this study, we investigated results measured over several kinds of dielectric characteristics of liquid nitrogen taking into consideration for application of high Tc superconductor. Dependence of breakdown voltage of gap width, polarity and pressure is reported in this paper and time delay characteristics of breakdown is also the subject of this discussion.

  • PDF

Insulation test of Mini model for the Development of the conduction cooled HTS SMES (전도냉각형 HTS SMES 개발을 위한 미니모델의 절연성능평가)

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.32-36
    • /
    • 2007
  • The 600 kJ calss high-temperature superconducting(HTS) SMES(superconducting magnetic energy storage) system is being developed by Korean Electrotechnology Research Institute(KERI). The system is operated in cryogenic temperature and high vacuum condition. The SMES magnet was cooled by conduction cooling method using a Gifford-McMahon cycle cryocooler. Thus the electric insulation design at cryogenic temperature and high vacuum is a key and an important element. Because it accomplish compact design that is a big advantage of HTS SMES. This paper describes the electric insulation design, fabrication and experimental results for a mini model of conduction cooled HTS SMES.

Design and manufacture of Bi-2223 HTS current leads for SMES magnet

  • Oh, S.S.;Cho, J.W.;Ha, H.S.;Sim, K.D.;Ha, D.W.;Seong, K.C.;Kwon, Y.K.;Ryu, K.S.;Kim, S.H.;Jang, H.M.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.236-240
    • /
    • 2000
  • Bi-2223 HTS current leads for a superconducting magnetic energy storage(SMES) magnet were designed and manufactured. The HTS leads composed of Bi-2223/AgAu tapes and stainless steel former were connected to conventional vapor-cooled copper leads. The heat input to the liquid helium through the HTS lead was 0.39 W/lead when the warm end part's temperature is 65 K. And, the critical current of the HTS leads was about 1.6 kA when the warm end part's temperature is 80 K. The measured those values are well consistent with computed values.

  • PDF

Basic Insulation Characteristics of Conduction-Cooled HTS SMES System (전도냉각 고온초전도 SMES 시스템의 기초절연 특성)

  • Choi Jae-Hyeong;Kwang Dong-Soon;Cheon Hyeon-Gweon;Kim Sang-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.8
    • /
    • pp.404-410
    • /
    • 2006
  • Toward the practical applications, on operation of conduction-cooled HTS SMES at temperatures well below 40[K] should be investigated, in order to take advantage of a greater critical current density of HTS and considerably reduce the size and weight of the system. In order to take advantage of a greater critical current density of high temperature superconducting (HTS) and considerably reduce the size and weight of the system, conduction-cooled HTS superconducting magnetic energy storage (SMES) at temperatures well below 40[K] should be investigated. This work focuses on the breakdown and flashover phenomenology of dielectrics exposed in air and/or vacuum for temperatures ranging from room temperature to cryogenic temperature. Firstly, we summarize the insulation factors of the magnet for the conduction cooled HTS SMES. And Secondly a surface flashover as well as volume breakdown in air and/or vacuum with two kind insulators has been investigated. Finally, we will discuss applications for the HTS SMES including aging studies on model coils exposed in vacuum at cryogenic temperature. The commercial application of many conduction-cooled HTS magnets, however, requires refrigeration at temperatures below 40[K], in order to take advantage of a greater critical current density of HTS and reduce considerably the size and weight of the system. The magnet is driven in vacuum condition. The need to reduce the size and weight of the system has led to the consideration of the vacuum as insulating media. We are studying on the insulation factors of the magnet for HTS SMES. And we experiment the spacer configure effect in the dielectric flashover characteristics. From the results, we confirm that our research established basic information in the insulation design of the magnet.

The Electrical Insulation Design of 600kJ Conduction Cooled HTS SMES (600kJ 전도냉각 고온초전도 SMES의 전기절연 설계)

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Min, Chi-Hyun;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.67-71
    • /
    • 2007
  • The electrical insulation design of 600 kJ conduction cooled high-Tc superconducting magnetic energy storage (SMES) have been studied in this paper. The high voltage is applied to both ends of magnet of high-Tc SMES by quench or energy discharge. Therefore. the insulation design of the high voltage needs for commercialization. stability. reliability and so on. In this study. we analyzed the insulation composition of a high-Tc SMES. and investigated about the insulation characteristics of the materials such as Kapton. AIN. $Al_2O_3$. GFRP and vacuum in cryogenic temperature. Base on these results. the insulation design for 600 kJ conduction cooled high-Tc SMES was performed.

Thermal analysis of the conduction cooling system for HTS SMES system of 600 kJ class (600kJ급 SMES용 전도냉각시스템 열해석)

  • Hong, Yong-Ju;Yeom, Han-Kil;Park, Seong-Je;Kim, Hyo-Bong;Koh, Deuk-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1959-1963
    • /
    • 2007
  • SMES systems need cryogenic cooling systems. Conduction cooling system has more effective, compact structure than cryogen. In general, 2 stage GM cryocoolers are used for conduction cooling of HTS SMES system. 1st stages of cryocoolers are used for the cooling of current leads and radiation shields, and 2nd stages of cryocoolers for HTS coil. For the effective conduction cooling of the HTS SMES system, the temperature difference between the cryocooler and HTS coil should be minimized. In this paper, a cryogenic conduction cooling system for HTS SMES is analyzed to evaluate the performance of the cooling system. The analysis is carried out for the steady state with the heat generation of the HTS coil and effects of the thermal contact resistance. The results show the effects of the heat generation and thermal contact resistance on the temperature distribution.

  • PDF