• 제목/요약/키워드: Superconducting Fault Current Limiter

검색결과 493건 처리시간 0.018초

초전도한류기 적용계통에서의 RTDS 보호계전기 연계시험을 위한 기본연구 (A basic study on protective relay testing using RTDS in power system applying SFCL)

  • 이승렬;윤재영;김재호;이병준
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.35-39
    • /
    • 2009
  • The study for a protective relay system is one of the important technical issues on the power system application of Superconducting Fault Current Limiter (SFCL). We used Real Time Digital Simulator(RTDS) to study the true interaction of the protection system with the power system. RTDS modeling of SFCL is necessary to the detailed protective relay tests. In this paper, we developed an analysis model using RTDS for studying the transient behavior of 22.9kV SFCL and carried out closed-loop testing of protective relays in distribution power system with the developed SFCL model. The SFCL model has the operation mechanism of 22.9kV hybrid SFCL being developed by LSIS and KEPRI in Korea. The parameters of the model are based on the test data of the real SFCL. Power system planners and operators can solve the expected problems in power system application of SFCL using protective relay testing results.

초전도 한류모듈 내 고온초전도 선재 배치에 따른 교류손실 변화 (AC loss dependency on the arrangement of the HTS wires in the current limiting module for SFCL)

  • 김우석;양성은;이지영;김희선;유승덕;현옥배;김혜림
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.9-12
    • /
    • 2012
  • Usually, the AC loss from the superconducting element of an SFCL due to the load current is very small because it is composed of the combination of bifilar windings with very small reactance. Although the AC loss is small enough, we should be albe to predict for the design and control of the cryogenic system. In fact, an SFCL for the transmission voltage class may not generate ignorable AC loss because of the inevitable space between the HTS wires for the high voltage insulation and cryogenic efficiency. To measure the AC loss dependency on the space between the 2G HTS wires with the width of 4.4 mm, we prepared an experimental setup which could adjust the distance between the wires. We used two 500-mm length HTS wires in parallel and applied the current in the opposite direction for each wire to simulate a part of a current limiting module for a high voltage SFCL. We also put two couples of voltage taps at the ends of each wire and a cancel coil in the voltage measurement circuit to compensate the reactive component from the voltage taps. In this condition, we varied the distance between the wires to investigate the change of the transport current loss. A similar experimental study with HTS wire with the width of 12 mm is now in progress.

초전도 한류기의 턴간 절연특성 (Dielectric Characteristics of Turn-ro-Turn Insulation for SFCL)

  • 백승명;정종만;이창화;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 초전도 자성체 연구회
    • /
    • pp.65-68
    • /
    • 2003
  • Interconnected power system operation has given rise to the problem of increased fault levels and leads to over stressing of all the components. Use have been made of recently developed high Tc superconductor in devising a superconducting fault current limiter (SFCL) that promises optimum performance in terms of capital cost, size, auto sensing, operational losses, response time and reliability. Recently, research about the application of the SFCL is actively progressing in Korea. To be applied for SFCL practically, the electrical insulation design of SFCL must be developed. Therefore, this paper presents the result of an investigation of the dielectric characteristics of turn-to-turn insulation for SFCL in liquid nitrogen. The dielectric characteristics of turn-to-turn insulation models of SFCL were investigated. We obtained following results. The breakdown voltages increased as the spacer thickness and length increased. And the breakdown voltages of turn-to-turn model without spacer were higher than the breakdown voltages of turn-to-turn model with spacer under impulse as well as AC voltages. The information gathered in this test series should be helpful in the design of liquid nitrogen filled SFCL.

  • PDF