• 제목/요약/키워드: Supercavity width

검색결과 3건 처리시간 0.019초

받음각을 갖는 3차원 캐비테이터에서 발생하는 비축대칭 초공동 유동해석 (Numerical Analysis of Non-Axisymmetric Supercavitating Flow Around a Three-Dimensional Cavitator with an Angle of Attack)

  • 황대규;안병권
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.240-247
    • /
    • 2023
  • In this study, morphological and hydrodynamic characteristics of the non-axisymmetric supercavity generated behind a disk-shaped cavitator were examined. By extending the previous study on axisymmetric supercavitating flow based on a boundary element method, hydrodynamic forces acting under the angle of attack condition of 0 to 30 ° and shape characteristics of the supercavity were analyzed. The results revealed that increasing the angle of attack by 30 ° reduced the length and width of the cavity by about 15% and the volume by about 40 %. An empirical formula that can quantitatively estimate the geometrical characteristics and change of the cavity was derived. It is expected that this method can be used to evaluate the shape information and force characteristics of the supercavity for the control of the vehicle in a very short time compared to the viscous analysis in the initial design stage of the supercavity underwater vehicle.

Experimental investigation of supercavitating flows

  • Ahn, Byoung-Kwon;Lee, Tae-Kwon;Kim, Hyoung-Tae;Lee, Chang-Sup
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.123-131
    • /
    • 2012
  • When the object is traveling in the water at tremendously high speeds, the cavity forms and grows up at a fore part of the object called cavitator, and the object is eventually enveloped by vaporized water, supercavitation. As a result, the only part of the object in direct contact with the water is the cavitator, so skin-friction drag is significantly reduced. This is why recently supercavitating objects have been interested in many applicable fields. In this study we are focused out attention on supercavitating flows around various shapes of two and three dimensional cavitators. First, general features of supercavitation are examined by analyzing results obtained by the previously developed numerical method. Second, experimental observations are carried out at a cavitation tunnel at the Chungnam National University (CNU CT), and supercavity dimensions are scrutinized.

2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석 (A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow)

  • 김형태;이현배
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.