• Title/Summary/Keyword: Super-Wideband Antenna

Search Result 4, Processing Time 0.025 seconds

Design of Super Wideband Dipole Antenna with 15:1 Impedance Bandwidth Ratio (15:1 임피던스 대역폭 비를 가지는 초광대역 다이폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.67-68
    • /
    • 2013
  • In this paper, a super wideband printed dipole antenna operating in the band of 1-15 GHz is studied. A semi-circular-shaped dipole element is used to obtain a super wideband characteristic. Optimal design parameters are obtained by analyzing the effects of the gap between the two arms of the semi-circular-shaped dipole and the radius of the semi-circle on the input reflection coefficient and gain characteristics. The optimized printed semi-circular-shaped dipole antenna is fabricated on an FR4 substrate with a dimension of $100mm{\times}100mm$. Experimental results show that the antenna has a desired super wideband characteristic with a frequency band of 1-15 GHz (bandwidth ration 15:1, 175%) for a VSWR < 2.

  • PDF

A Super-Wideband Dipole Antenna With a Self-Complementary Structure (자기상보 구조를 갖는 초광대역 다이폴 안테나)

  • Park, Won Bin;Kwon, Oh Heon;Lee, Sungwoo;Lee, Jong Min;Park, Young Mi;Hwang, Keum Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1414-1416
    • /
    • 2016
  • In this paper, a SWB (Super-WideBand) dipole antenna with self-complementary structure is proposed for signal intelligence. The proposed antenna consists of a self-complementary dipole antenna and a tapered balun for balanced feeding. The measured -10 dB reflection bandwidth of the proposed antenna is more than 28:1 (0.73-20 GHz) and 3 dB axial ratio bandwidth is 3.25:1 (1.91-6.22 GHz) with RHCP (Right Hand Circular Polarization) at +z direction. The measured radiation patterns are omni-directional in lower frequency band and bi-directional in higher frequency band. The measured peak gain within -10 dB reflection bandwidth varies from 2.83 dBi to 7.66 dBi.

Study on the Bandwidth of Microstrip Patch Antenna (슬롯 패치 안테나의 대역폭 확장에 관한 연구)

  • Lee, Chick-Youl
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.581-585
    • /
    • 2013
  • A technique to expand the operating impedance bandwidth of a microstrip patch antenna is presented. The antenna is fed by a truncated T-shaped microstrip line on the ground plane with the rectangular slot. The proposed microstrip patch antenna offers wide bandwidth characteristics with the rectangular slot which has optimized size and position on the ground plane. The simulation result shows a fractional bandwidth of 127.8 %(0.65 to 2.95 GHz) at VSWR 2:1.

An Analysis of Satellite Communications System structure for NCW (NCW대비 군 위성통신 구조 분석)

  • Park, Woo-Chul;Cha, Jae-Ryong;Kim, Jae-Hyun
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • As the information age comes out, the aspect of future war brings about the many changes in terms of war-fighting environment. Accordingly, information superiority and intelligence-centric warfare have been important and new war-fighting concept such as NCW(network centric warfare) have been turned up. This paper proposed all-weather core-strategy communications systems guaranteeing not only the real-time transmission of the information collected in a battlefield and expansion, automation, and rapidity of a battlefield but also broadband, mobility, survivability, and flexibility. The proposed military satellite communications system is classified into wideband mass capacity link, survivability, and the system supporting OTM(on the move) communication for the real-time transmission of battlefield information. This paper analyzed the essential operation concepts and core schemes of the U.S. Army's next generation system, TSAT(Transformational Satellite Communication System). Base on the analysis results, this paper proposed that the architecture of next generation military satellite communications systems for NCW have to provide the data rate, anti-jamming capability, network control and management capability which are optimally adaptable for the wireless channel environments such as jamming and interference and to support the variety of platforms like high-speed mobile vehicles, micromini devices, super-high speed unmanned aerial vehicles. Finally, this paper also proposed that next generation military satellite communications systems need the technologies such as the adaptable multi-antenna, laser link, and next-generation anti-jamming waveform.

  • PDF